ECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity

To address semantic similarity on multilingual and cross-lingual sentences, we firstly translate other foreign languages into English, and then feed our monolingual English system with various interactive features. Our system is further supported by combining with deep learning semantic similarity and our best run achieves the mean Pearson correlation 73.16% in primary track.

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[3]  Jan Snajder,et al.  TakeLab: Systems for Measuring Semantic Text Similarity , 2012, *SEMEVAL.

[4]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[5]  Mihai Surdeanu,et al.  The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.

[6]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[7]  Man Lan,et al.  ECNU: One Stone Two Birds: Ensemble of Heterogenous Measures for Semantic Relatedness and Textual Entailment , 2014, *SEMEVAL.

[8]  Christopher D. Manning,et al.  Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks , 2015, ACL.

[9]  Man Lan,et al.  ECNU: Using Traditional Similarity Measurements and Word Embedding for Semantic Textual Similarity Estimation , 2015, *SEMEVAL.

[10]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[11]  Hal Daumé,et al.  Deep Unordered Composition Rivals Syntactic Methods for Text Classification , 2015, ACL.

[12]  Steven Bethard,et al.  DLS@CU: Sentence Similarity from Word Alignment and Semantic Vector Composition , 2015, *SEMEVAL.

[13]  Kevin Gimpel,et al.  Towards Universal Paraphrastic Sentence Embeddings , 2015, ICLR.

[14]  Hongfang Liu,et al.  MayoNLP at SemEval-2016 Task 1: Semantic Textual Similarity based on Lexical Semantic Net and Deep Learning Semantic Model , 2016, SemEval@NAACL-HLT.

[15]  Piotr Andruszkiewicz,et al.  Samsung Poland NLP Team at SemEval-2016 Task 1: Necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity. , 2016, *SEMEVAL.

[16]  Tomas Brychcin,et al.  UWB at SemEval-2016 Task 1: Semantic Textual Similarity using Lexical, Syntactic, and Semantic Information , 2016, *SEMEVAL.

[17]  Eneko Agirre,et al.  SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation , 2017, *SEMEVAL.