Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows

Shape optimization problems governed by PDEs result from many applications in computational fluid dynamics. These problems usually entail very large computational costs and require also a suitable approach for representing and deforming efficiently the shape of the underlying geometry, as well as for computing the shape gradient of the cost functional to be minimized. Several approaches based on the displacement of a set of control points have been developed in the last decades, such as the so-called free-form deformations. In this paper we present a new theoretical result which allows to recast free-form deformations into the general class of perturbation of identity maps, and to guarantee the compactness of the set of admissible shapes. Moreover, we address both a general optimization framework based on the continuous shape gradient and a numerical procedure for solving efficiently three-dimensional optimal design problems. This framework is applied to the optimal design of immersed bodies in Stokes flows, for which we consider the numerical solution of a benchmark case study from literature.

[1]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[2]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[3]  R. Krause,et al.  Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in Haemodynamics , 2012 .

[4]  Antoine Henrot,et al.  What is the Optimal Shape of a Pipe? , 2008, 0810.4322.

[5]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.

[6]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[7]  Max D. Gunzburger,et al.  On a shape control problem for the stationary Navier-Stokes equations , 2000 .

[8]  Jean-Antoine Désidéri,et al.  Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics , 2003 .

[9]  Mutsuto Kawahara,et al.  Shape Optimization of Body Located in Incompressible Viscous Flow Based on Optimal Control Theory , 2003 .

[10]  de Marc Schoenauer,et al.  Conception optimale de structures , 2007 .

[11]  A. Jameson Optimum aerodynamic design using CFD and control theory , 1995 .

[12]  Ioannis K. Nikolos,et al.  Freeform Deformation Versus B-Spline Representation in Inverse Airfoil Design , 2008, J. Comput. Inf. Sci. Eng..

[13]  Aldo Frediani,et al.  Variational analysis and aerospace engineering : mathematical challenges for aerospace design : contributions from a workshop held at the school of mathematics in Erice, Italy , 2012 .

[14]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[15]  Johanna Weiss,et al.  Optimal Shape Design For Elliptic Systems , 2016 .

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[17]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[18]  W SederbergThomas,et al.  Free-form deformation of solid geometric models , 1986 .

[19]  Dominique Bechmann,et al.  A survey of spatial deformation from a user-centered perspective , 2008, TOGS.

[20]  G. Rozza,et al.  Parametric free-form shape design with PDE models and reduced basis method , 2010 .

[21]  S. Richardson Optimum profiles in two-dimensional Stokes flow , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[22]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[23]  Gianluigi Rozza,et al.  Numerical Simulation of Sailing Boats: Dynamics, FSI, and Shape Optimization , 2012 .

[24]  O. Pironneau,et al.  SHAPE OPTIMIZATION IN FLUID MECHANICS , 2004 .

[25]  Henry J. Lamousin,et al.  NURBS-based free-form deformations , 1994, IEEE Computer Graphics and Applications.

[26]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[27]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[28]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[29]  J. Samareh Aerodynamic Shape Optimization Based on Free-form Deformation , 2004 .

[30]  J.-M. Bourot,et al.  On the numerical computation of the optimum profile in Stokes flow , 1974, Journal of Fluid Mechanics.

[31]  Neil A. Dodgson,et al.  Preventing Self-Intersection under Free-Form Deformation , 2001, IEEE Trans. Vis. Comput. Graph..

[32]  D. Bertsekas On the Goldstein-Levitin-Polyak gradient projection method , 1974, CDC 1974.

[33]  L. Hou,et al.  Boundary velocity control of incompressible flow with an application to viscous drag reduction , 1992 .

[34]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[35]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[36]  I. Nikolos,et al.  Exploring Freeform Deformation Capabilities in Aerodynamic Shape Parameterization , 2005, EUROCON 2005 - The International Conference on "Computer as a Tool".

[37]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[38]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[39]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[40]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[41]  Enrique Fernández-Cara,et al.  The Differentiability of the Drag with Respect to the Variations of a Lipschitz Domain in a Navier--Stokes Flow , 1997 .

[42]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[43]  Michael Schäfer,et al.  A numerical approach for shape optimization of fluid flow domains , 2005 .