Unravelling magmatic-hydrothermal processes at Salobo and GT-46 IOCG deposits, Carajás mineral province, Brazil: Constraints from whole-rock geochemistry and trace elements in apatite

[1]  L. Monteiro,et al.  Magmatic-hydrothermal fluids leaching older seafloor exhalative rocks to form the IOCG deposits of the Carajás Province, Brazil: Evidence from boron isotopes , 2021, Precambrian Research.

[2]  L. Monteiro,et al.  Mesoarchean migmatites of the Carajás Province: From intra-arc melting to collision , 2021 .

[3]  Yue-heng Yang,et al.  Apatite geochemical and Sr Nd isotopic insights into granitoid petrogenesis , 2021 .

[4]  C. G. Oliveira,et al.  Carajás Mineral Province - Example of metallogeny of a rift above a cratonic lithospheric keel , 2020 .

[5]  J. Crowley,et al.  OPENING THE MAGMATIC-HYDROTHERMAL WINDOW: HIGH-PRECISION U-Pb GEOCHRONOLOGY OF THE MESOPROTEROZOIC OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA , 2020 .

[6]  A. Simon,et al.  A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite , 2020, Economic Geology.

[7]  M. Reich,et al.  Geochemical and Isotopic Signature of Pyrite as a Proxy for Fluid Source and Evolution in the Candelaria-Punta del Cobre Iron Oxide Copper-Gold District, Chile , 2020, Economic Geology.

[8]  Kei Sato,et al.  Tracking hydrothermal events using zircon REE geochemistry from the Carajás Mineral Province, Brazil , 2020 .

[9]  L. Monteiro,et al.  Stable isotopes and fluid inclusion constraints on the fluid evolution in the Bacaba and Castanha iron oxide-copper-gold deposits, Carajás Mineral Province, Brazil , 2020 .

[10]  A. Boyce,et al.  Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust , 2020, Nature Communications.

[11]  L. Monteiro,et al.  Evolution of brines and CO2-rich fluids and hydrothermal overprinting in the genesis of the Borrachudo copper deposit, Carajás Province , 2020 .

[12]  A. Nogueira,et al.  New stratigraphic proposal of a Paleoproterozoic siliciclastic succession: Implications for the evolution of the Carajás Basin, Amazonian craton, Brazil , 2020 .

[13]  R. Xavier,et al.  Critical assessment of geochronological data from the Carajás Mineral Province, Brazil: Implications for metallogeny and tectonic evolution , 2020 .

[14]  L. Corriveau,et al.  Geochemistry of hydrothermal tourmaline from IOCG occurrences in the Great Bear magmatic zone: Implications for fluid source(s) and fluid composition evolution , 2020 .

[15]  J. Gross,et al.  Apatite trace element geochemistry and cathodoluminescent textures—A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA , 2020 .

[16]  C. Lana,et al.  Provenance of the Buritirama Formation reveals the Paleoproterozoic assembly of the Bacajá and Carajás blocks (Amazon Craton) and the chronocorrelation of Mn-deposits in the Transamazonian/Birimian system of northern Brazil/West Africa , 2019 .

[17]  L. Bagas,et al.  Petrogenesis and metallogenic potential of the Wulanba granite, southern Great Xing’an Range, NE China: constraints from whole-rock and apatite geochemistry , 2019, Geological Magazine.

[18]  L. Monteiro,et al.  Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil): Early syngenetic chalcopyrite overprinted by IOCG mineralization , 2019, Ore Geology Reviews.

[19]  L. Monteiro,et al.  Tracing Fluid Sources for the Salobo and Igarapé Bahia Deposits: Implications for the Genesis of the Iron Oxide Copper-Gold Deposits in the Carajás Province, Brazil , 2019, Economic Geology.

[20]  Yue-heng Yang,et al.  Tracing magma mixing and crystal–melt segregation in the genesis of syenite with mafic enclaves: Evidence from in situ zircon Hf–O and apatite Sr–Nd isotopes , 2019, Lithos.

[21]  R. Xavier,et al.  Multistage Evolution of the Neoarchean (ca. 2.7 Ga) Igarapé Cinzento (GT-46) Iron Oxide Copper-Gold Deposit, Cinzento Shear Zone, Carajás Province, Brazil , 2019, Economic Geology.

[22]  M. Reich,et al.  Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: Evidence for magmatic and hydrothermal stages of mineralization , 2019, Geochimica et Cosmochimica Acta.

[23]  R. Xavier,et al.  Hydrothermal Alteration, Fluid Evolution, and Re-Os Geochronology of the Grota Funda Iron Oxide Copper-Gold Deposit, Carajás Province (Pará State), Brazil , 2018, Economic Geology.

[24]  F. Tavares,et al.  The multistage tectonic evolution of the northeastern Carajás Province, Amazonian Craton, Brazil: Revealing complex structural patterns , 2018, Journal of South American Earth Sciences.

[25]  Wei-dong Sun,et al.  Formation of A-type granites in the Lower Yangtze River Belt: A perspective from apatite geochemistry , 2018 .

[26]  Yong Zhang,et al.  In situ major-, trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit, NE China: Constraints on the petrogenetic-metallogenic features , 2018 .

[27]  A. S. Venkatesh,et al.  Chemistry of magnetite-apatite from albitite and carbonate-hosted Bhukia Gold Deposit, Rajasthan, western India – An IOCG-IOA analogue from Paleoproterozoic Aravalli Supergroup: Evidence from petrographic, LA-ICP-MS and EPMA studies , 2017 .

[28]  Wei-dong Sun,et al.  The formation of Luoboling porphyry Cu–Mo deposit: Constraints from zircon and apatite , 2017 .

[29]  L. Monteiro,et al.  Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology , 2017, Mineralium Deposita.

[30]  J. Webster,et al.  Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China: Implications for the behavior of halogens in mineralized porphyry systems , 2016 .

[31]  N. Cook,et al.  Apatite at Olympic Dam, South Australia: A petrogenetic tool , 2016 .

[32]  L. Coogan,et al.  Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration , 2016 .

[33]  R. Hu,et al.  Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China , 2016 .

[34]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[35]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[36]  L. Monteiro,et al.  Neoarchean and Paleoproterozoic Iron Oxide-Copper-Gold Events at the Sossego Deposit, Carajás Province, Brazil: Re-Os and U-Pb Geochronological Evidence , 2015 .

[37]  L. Monteiro,et al.  Timing of multiple hydrothermal events in the iron oxide–copper–gold deposits of the Southern Copper Belt, Carajás Province, Brazil , 2015, Mineralium Deposita.

[38]  L. Corriveau,et al.  Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada , 2015, Mineralium Deposita.

[39]  R. Dall’Agnol,et al.  Archean granitoid magmatism in the Canaã dos Carajás area: Implications for crustal evolution of the Carajás province, Amazonian craton, Brazil , 2013 .

[40]  R. Dall’Agnol,et al.  Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites? , 2012 .

[41]  A. Hofmann,et al.  Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India , 2012 .

[42]  G. Eby,et al.  The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach , 2012 .

[43]  K. Qin,et al.  Major and Trace Element Characteristics of Apatites in Granitoids from Central Kazakhstan: Implications for Petrogenesis and Mineralization , 2012 .

[44]  J. Richards HIGH Sr/Y ARC MAGMAS AND PORPHYRY Cu ± Mo ± Au DEPOSITS: JUST ADD WATER , 2011 .

[45]  C. R. S. Souza Filho,et al.  Mesoarchean (3.0 and 2.86 Ga) host rocks of the iron oxide–Cu–Au Bacaba deposit, Carajás Mineral Province: U–Pb geochronology and metallogenetic implications , 2011 .

[46]  Alberto Renzulli,et al.  Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes , 2010 .

[47]  D. Groves,et al.  Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits , 2010 .

[48]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[49]  P. Barbey,et al.  STRUCTURE, PETROLOGY, GEOCHEMISTRY AND ZIRCON U/Pb AND Pb/Pb GEOCHRONOLOGY OF THE SYNKINEMATIC ARCHEAN (2.7 Ga) A-TYPE GRANITES FROM THE CARAJÁS METALLOGENIC PROVINCE, NORTHERN BRAZIL , 2009 .

[50]  C. R. S. Filho,et al.  Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil , 2008 .

[51]  L. Monteiro,et al.  Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil) , 2008 .

[52]  C. R. Souza Filho,et al.  Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide–copper–gold deposit, Carajás Mineral Province, Brazil: paragenesis and stable isotope constraints , 2008 .

[53]  E. Bastrakov,et al.  Timing of Iron Oxide Cu-Au-(U) Hydrothermal Activity and Nd Isotope Constraints on Metal Sources in the Gawler Craton, South Australia , 2007 .

[54]  E. Bastrakov,et al.  Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia , 2007 .

[55]  Peter J. Pollard,et al.  An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces , 2006 .

[56]  R. Krymsky,et al.  Geology, geochemistry, and U–Pb geochronology of the Archean (2.74 Ga) Serra do Rabo granite stocks, Carajás Metallogenetic Province, northern Brazil , 2006 .

[57]  M. D. Silva,et al.  Geologia e mineralizacoes de Fe-Cu-Au do alvo GT 46 (Igarape Cinzento) Carajas , 2006 .

[58]  D. Thorkelson,et al.  Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada , 2005 .

[59]  F. Tornos,et al.  A new scenario for related IOCG and Ni–(Cu) mineralization: the relationship with giant mid‐crustal mafic sills, Variscan Iberian Massif , 2005 .

[60]  R. Dall’Agnol,et al.  Petrogenesis of the Paleoproterozoic rapakivi A-type granites of the Archean Carajás metallogenic province, Brazil , 2005 .

[61]  D. Groves,et al.  Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper-Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu-Au-(U-REE) Mineralization , 2005 .

[62]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[63]  R. Sillitoe Iron oxide-copper-gold deposits: an Andean view , 2003 .

[64]  L. Fontboté,et al.  Re–Os and Pb–Pb geochronology of the Archean Salobo iron oxide copper–gold deposit, Carajás mineral province, northern Brazil , 2003 .

[65]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[66]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[67]  P. Kelemen,et al.  The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study , 2001 .

[68]  M. Macambira,et al.  Th–U–Pb isotopic systems and internal structures of complex zircons from an enderbite from the Pium Complex, Carajás Province, Brazil: evidence for the ages of granulite facies metamorphism and the protolith of the enderbite , 2000 .

[69]  A. Barth,et al.  Magmatic anhydrite in granitic rocks: First occurrence and potential petrologic consequences , 2000 .

[70]  L. Sha,et al.  Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis , 1999 .

[71]  I. Carmichael,et al.  The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth , 1998 .

[72]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[73]  E. Middlemost Naming materials in the magma/igneous rock system , 1994 .

[74]  R. Dall’Agnol,et al.  Proterozoic anorogenic magmatism in the Central Amazonian Province, amazonian araton: Geochronological, petrological and geochemical aspects , 1994 .

[75]  M. Drummond,et al.  Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc , 1993 .

[76]  N. Oreskes,et al.  Geological characteristics and tectonic setting of proterozoic iron oxide (CuUAuREE) deposits , 1992 .

[77]  C. M. Gray,et al.  Preserved initial in apatite from altered felsic igneous rocks: A case study from the Middle Proterozoic of South Australia , 1992 .

[78]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[79]  E. Watson,et al.  Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[80]  Z. Lindenmayer,et al.  U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil , 1991 .

[81]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[82]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[83]  A. Tindle,et al.  Geochemical characteristics of collision-zone magmatism , 1986, Geological Society, London, Special Publications.

[84]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[85]  M. T. Naney Phase equilibria of rock-forming ferromagnesian silicates in granitic systems , 1983 .

[86]  A. Neiva Greisenization of a muscovite-biotite albite granite of northern Portugal , 1974 .