Derivative-free high-order uniformly accurate schemes for highly oscillatory systems

In this paper we address the computational aspects of uniformly accurate numerical methods for solving highly oscillatory evolution equations. In particular, we introduce an approximation strategy that allows the construction of arbitrary high-order methods using solely the right-hand side of the differential equation. No derivative of the vector field is required, while uniform accuracy is retained. The strategy is then applied to two different formulations of the problem, namely the two-scale and the micro–macro formulations. Numerical experiments on the Hénon–Heiles system, as well as on the Klein–Gordon equation and a Vlasov-type problem, confirm the validity of the new strategy.

[1]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[2]  Nicolas Crouseilles,et al.  Uniformly Accurate Forward Semi-Lagrangian Methods for Highly Oscillatory Vlasov-Poisson Equations , 2017, Multiscale Model. Simul..

[3]  Nicolas Crouseilles,et al.  Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations , 2012, J. Comput. Phys..

[4]  Nicolas Crouseilles,et al.  Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations , 2013, Numerische Mathematik.

[5]  Ander Murua,et al.  Multi-revolution composition methods for highly oscillatory differential equations , 2014, Numerische Mathematik.

[6]  Francesco Salvarani,et al.  Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method , 2007, 0710.3983.

[7]  H. Kreiss Problems with different time scales for partial differential equations , 1980 .

[8]  Weizhu Bao,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein-Gordon Equation in the Nonrelativistic Limit Regime , 2014, SIAM J. Numer. Anal..

[9]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.

[10]  Eric Sonnendrücker,et al.  LONG TIME BEHAVIOR OF THE TWO-DIMENSIONAL VLASOV EQUATION WITH A STRONG EXTERNAL MAGNETIC FIELD , 2000 .

[11]  Mohammed Lemou,et al.  A New Class of Uniformly Accurate Numerical Schemes for Highly Oscillatory Evolution Equations , 2017, Found. Comput. Math..

[12]  Erwan Faou,et al.  Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting , 2016, Math. Comput..

[13]  Guillaume Latu,et al.  Field-Aligned Interpolation for Semi-Lagrangian Gyrokinetic Simulations , 2018, J. Sci. Comput..

[14]  H. Kreiss,et al.  Problems with Different Time Scales for Nonlinear Partial Differential Equations , 1982 .

[15]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[16]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[17]  H. Kreiss,et al.  Initialization of the Primitive Equations by the Bounded Derivative Method , 1980 .

[18]  Ander Murua,et al.  Numerical stroboscopic averaging for ODEs and DAEs , 2011 .

[19]  Yan Wang,et al.  Uniformly Accurate Nested Picard Iterative Integrators for the Dirac Equation in the Nonrelativistic Limit Regime , 2019, SIAM J. Numer. Anal..

[20]  Jerrold E. Marsden,et al.  Space-time FLAVORS: finite difference, multisymlectic, and pseudospectral integrators for multiscale PDEs , 2011, 1104.0272.

[21]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[22]  Nicolas Crouseilles,et al.  Numerical methods for the two-dimensional Vlasov-Poisson equation in the finite Larmor radius approximation regime , 2018, J. Comput. Phys..

[23]  Xiaowei Jia,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime , 2015, SIAM J. Numer. Anal..

[24]  Nicolas Crouseilles,et al.  Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensional Vlasov-Poisson equation with uniform strong magnetic field , 2017, J. Comput. Phys..

[25]  Nicolas Crouseilles,et al.  Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field , 2019, Math. Comput..

[26]  Weizhu Bao,et al.  Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime , 2019, J. Comput. Phys..

[27]  Nicolas Crouseilles,et al.  Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Poisson equation with strong magnetic field , 2018, Comput. Phys. Commun..

[28]  Mohammed Lemou,et al.  Highly Oscillatory Problems with Time-Dependent Vanishing Frequency , 2019, SIAM J. Numer. Anal..

[29]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[30]  Xiaofei Zhao,et al.  On comparison of asymptotic expansion techniques for nonlinear Klein-Gordon equation in the nonrelativistic limit regime , 2020, Discrete & Continuous Dynamical Systems - B.

[31]  G. L. Browning,et al.  Multiscale Bounded Derivative Initialization for an Arbitrary Domain , 2002 .

[32]  Mohammed Lemou,et al.  Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics , 2017, Numerische Mathematik.

[33]  Ander Murua,et al.  Stroboscopic Averaging for the Nonlinear Schrödinger Equation , 2015, Found. Comput. Math..

[34]  Lawrence M. Perko,et al.  Higher order averaging and related methods for perturbed periodic and quasi-periodic systems , 1969 .

[35]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[36]  Nicolas Crouseilles,et al.  Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field with varying direction , 2019, SIAM J. Sci. Comput..