Unified radio interferometric calibration and imaging with joint uncertainty quantification

The data reduction procedure for radio interferometers can be viewed as a combined calibration and imaging problem. We present an algorithm that unifies cross-calibration, self-calibration, and imaging. Being a Bayesian method, that algorithm does not only calculate an estimate of the sky brightness distribution, but also provides an estimate of the joint uncertainty which entails both the uncertainty of the calibration and the one of the actual observation. The algorithm is formulated in the language of information field theory and uses Metric Gaussian Variational Inference (MGVI) as the underlying statistical method. So far only direction-independent antenna-based calibration is considered. This restriction may be released in future work. An implementation of the algorithm is contributed as well.

[1]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[2]  T. Ensslin,et al.  RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy , 2013, 1311.5282.

[3]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[4]  Torsten A. Ensslin,et al.  Information field theory for cosmological perturbation reconstruction and non-linear signal analysis , 2008, ArXiv.

[5]  Patrick Marais,et al.  Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations , 2015, Astron. Comput..

[6]  T. Ensslin,et al.  Charting nearby dust clouds using Gaia data only (Corrigendum) , 2019, Astronomy & Astrophysics.

[7]  O. Smirnov,et al.  The MeqTrees software system and its use for third-generation calibration of radio interferometers , 2010, 1101.1745.

[8]  T. Ensslin,et al.  The Galactic Faraday depth sky revisited , 2019, Astronomy & Astrophysics.

[9]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[10]  Torsten A. Enßlin,et al.  Information Theory for Fields , 2018, Annalen der Physik.

[11]  Torsten A. Enßlin,et al.  Metric Gaussian Variational Inference , 2019, ArXiv.

[12]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[13]  Torsten A. Enßlin,et al.  Encoding prior knowledge in the structure of the likelihood , 2018, ArXiv.

[14]  A. Khintchine Korrelationstheorie der stationären stochastischen Prozesse , 1934 .

[15]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[16]  T. Ensslin,et al.  Separating diffuse from point-like sources - a Bayesian approach , 2018, 1804.05591.

[17]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[18]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[19]  Stefan J. Wijnholds,et al.  Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.

[20]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[21]  Marcelo Pereyra,et al.  Uncertainty quantification for radio interferometric imaging: I. proximal MCMC methods , 2017, Monthly Notices of the Royal Astronomical Society.

[22]  O. Smirnov,et al.  CUBICAL - fast radio interferometric calibration suite exploiting complex optimization , 2018, 1805.03410.