Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of landand water-related applications in coastal zones. Compared to optical satellites, cloud-cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all-weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud-prone tropical and sub-tropical climates. The canopy penetration capability with long radar wavelength enables L-band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change-induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L-band SAR data for geoscientific analyses that are relevant for coastal land applications.

[1]  Kevin B. Smith,et al.  Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems , 2001 .

[2]  Ake Rosenqvist,et al.  The potential of long-wavelength satellite-borne radar to support implementation of the Ramsar Wetlands Convention , 2007 .

[3]  Stuart R. Phinn,et al.  Floodplain inundation and vegetation dynamics in the Alligator Rivers region (Kakadu) of northern Australia assessed using optical and radar remote sensing , 2014 .

[4]  Colin Finlayson,et al.  Global extent and distribution of wetlands: trends and issues , 2018 .

[5]  Lisa-Maria Rebelo,et al.  Eco-Hydrological Characterization of Inland Wetlands in Africa Using L-Band SAR , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  C. E. Santosa,et al.  Development of an L-Band SAR Microsatellite Antenna for Earth Observation , 2018, Aerospace.

[7]  Waqas Qazi,et al.  A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier , 2018, The Egyptian Journal of Remote Sensing and Space Science.

[8]  C. Shum,et al.  Helmand River Hydrologic Studies Using ALOS PALSAR InSAR and ENVISAT Altimetry , 2009 .

[9]  L. Smith Satellite remote sensing of river inundation area, stage, and discharge: a review , 1997 .

[10]  Giorgos Mountrakis,et al.  Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification , 2014 .

[11]  James P. Hoffman,et al.  NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission , 2016, SPIE Asia-Pacific Remote Sensing.

[12]  Parwati Sofan,et al.  Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia , 2015, Natural Hazards.

[13]  M. Verdegem,et al.  Comment on ‘Water footprint of marine protein consumption—aquaculture’s link to agriculture’ , 2014 .

[14]  Philip A. Townsend,et al.  Estimating forest structure in wetlands using multitemporal SAR , 2002 .

[15]  Gail L. Chmura,et al.  Assessing Coastal Squeeze of Tidal Wetlands , 2013 .

[16]  Sassan Saatchi,et al.  The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest , 2000, IEEE Trans. Geosci. Remote. Sens..

[17]  I. M. Hasmadi,et al.  L-band saturation level for aboveground biomass of dipterocarp forests in Peninsular Malaysia , 2015 .

[18]  K. Moffett,et al.  Remote Sens , 2015 .

[19]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[20]  J. Kovacs,et al.  An object-oriented classification method for mapping mangroves in Guinea, West Africa, using multipolarized ALOS PALSAR L-band data , 2013 .

[21]  Katarzyna Dabrowska-Zielinska,et al.  Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV) Supplemented by Optical Data: A Case Study of Biebrza Wetlands in Northeast Poland , 2014, Remote. Sens..

[22]  Samuel Corgne,et al.  Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images , 2016, Remote. Sens..

[23]  Raffaele Albano,et al.  Multitemporal SAR Data and 2D Hydrodynamic Model Flood Scenario Dynamics Assessment , 2018, ISPRS Int. J. Geo Inf..

[24]  Maycira Costa,et al.  Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Dilce de Fátima Rossetti,et al.  Classification of Vegetation over a Residual Megafan Landform in the Amazonian Lowland Based on Optical and SAR Imagery , 2014, Remote. Sens..

[26]  T. Filatova,et al.  Climate change-driven losses in ecosystem services of coastal wetlands: A case study in the West coast of Bangladesh , 2019, Ocean & Coastal Management.

[27]  K. Clint Slatton,et al.  Modeling temporal variations in multipolarized radar scattering from intertidal coastal wetlands , 2008 .

[28]  C. Cordeiro,et al.  Mapping vegetation in a late Quaternary landform of the Amazonian wetlands using object-based image analysis and decision tree classification , 2015 .

[29]  Claudia Kuenzer,et al.  Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data , 2017, Remote. Sens..

[30]  Jurgenne H. Primavera,et al.  Overcoming the impacts of aquaculture on the coastal zone , 2006 .

[31]  Sandro Martinis,et al.  A Hierarchical Spatio-Temporal Markov Model for Improved Flood Mapping Using Multi-Temporal X-Band SAR Data , 2010, Remote. Sens..

[32]  Jeffrey P. Walker,et al.  Sensitivity of L-Band Radar Backscatter to Forest Biomass in Semiarid Environments: A Comparative Analysis of Parametric and Nonparametric Models , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Ridha Touzi,et al.  Phase of Target Scattering for Wetland Characterization Using Polarimetric C-Band SAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Guoqing Sun,et al.  The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass , 2014, Remote. Sens..

[35]  F. Yu,et al.  Growth responses of eight wetland species to water level fluctuation with different ranges and frequencies , 2019, PloS one.

[36]  Milton Kampel,et al.  Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data , 2016 .

[37]  P. K. Joshi,et al.  Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010 , 2016, Scientific Reports.

[38]  A. K. Milne,et al.  Towards an operational SAR monitoring system for monitoring environmental flows in the Macquarie Marshes , 2014, Wetlands Ecology and Management.

[39]  B. Brisco,et al.  Spectral analysis of wetlands using multi-source optical satellite imagery , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[40]  Shengjie Hu,et al.  Global wetlands: Potential distribution, wetland loss, and status. , 2017, The Science of the total environment.

[41]  Manabu Watanabe,et al.  Multitemporal Fluctuations in L-Band Backscatter From a Japanese Forest , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[42]  M. P. F. Costa,et al.  Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain , 2004 .

[43]  Sassan Saatchi,et al.  Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests , 2016, Remote. Sens..

[44]  Steve Groom,et al.  Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. , 2016, The Science of the total environment.

[46]  Joong-Sun Won,et al.  A Land Cover Variation Model of Water Level for the Floodplain of Tonle Sap, Cambodia, Derived From ALOS PALSAR and MODIS Data , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[47]  Ahmad Al Bitar,et al.  Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics , 2019, Remote. Sens..

[48]  D. Little,et al.  Aquaculture: global status and trends , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Xinwu Li,et al.  Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses , 2013, Remote. Sens..

[50]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[51]  Pieter Moonen,et al.  Impact of vegetation die‐off on spatial flow patterns over a tidal marsh , 2012 .

[52]  Joseph P. Spruce,et al.  Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy , 2016 .

[53]  Marc Simard,et al.  Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier , 2002 .

[54]  Hahn Chul Jung,et al.  Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data , 2017 .

[55]  Marc Simard,et al.  An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data , 2014, Wetlands Ecology and Management.

[56]  Elijah W. Ramsey,et al.  Coastal Flood Inundation Monitoring with Satellite C‐band and L‐band Synthetic Aperture Radar Data , 2013 .

[57]  Luciano Vieira Dutra,et al.  A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region , 2012 .

[58]  Xiuping Jia,et al.  Comparing six pixel-wise classifiers for tropical rural land cover mapping using four forms of fully polarimetric SAR data , 2017 .

[59]  Benjamin Holt,et al.  Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters , 2018, Sensors.

[60]  José Claudio Mura,et al.  Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery , 2011 .

[61]  Maycira Costa,et al.  Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery , 2013 .

[62]  Adriana Gomes Affonso,et al.  Combining ALOS/PALSAR derived vegetation structure and inundation patterns to characterize major vegetation types in the Mamirauá Sustainable Development Reserve, Central Amazon floodplain, Brazil , 2014, Wetlands Ecology and Management.

[63]  T. L. Toan,et al.  Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data , 2007 .

[64]  Vineet Kumar,et al.  Identification of forest cutting in managed forest of Haldwani, India using ALOS-2/PALSAR-2 SAR data. , 2018, Journal of environmental management.

[65]  Jack F. Paris,et al.  Radar remote sensing of forest and wetland ecosystems in the Central American tropics , 1994 .

[66]  Y. S. Rao,et al.  Comparative flood area analysis of C-band VH, VV, and L-band HH polarizations SAR data , 2017 .

[67]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[68]  Chu He,et al.  Forest Vertical Parameter Estimation Using PolInSAR Imagery Based on Radiometric Correction , 2016, ISPRS Int. J. Geo Inf..

[69]  Ramanuja Manavalan,et al.  Review of synthetic aperture radar frequency, polarization, and incidence angle data for mapping the inundated regions , 2018 .

[70]  Paul D. Bates,et al.  Waterline mapping in flooded vegetation from airborne SAR imagery , 2003 .

[71]  R. Lucas,et al.  New global forest/non-forest maps from ALOS PALSAR data (2007–2010) , 2014 .

[72]  Wenge Ni-Meister,et al.  Mapping wetlands in the Hudson Highlands ecoregion with ALOS PALSAR: an effort to identify potential swamp forest habitat for golden-winged warblers , 2014, Wetlands Ecology and Management.

[73]  C. Barbosa,et al.  Dual-season mapping of wetland inundation and vegetation for the central Amazon basin , 2003 .

[74]  R. Nicholls,et al.  Future response of global coastal wetlands to sea-level rise , 2018, Nature.

[75]  Ying Gao,et al.  The Soil Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture Retrieval From the SMAP Mission , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Bangsen Tian,et al.  The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[77]  Xiufeng He,et al.  Classification of coastal wetlands in eastern China using polarimetric SAR data , 2015, Arabian Journal of Geosciences.

[78]  L. Dijkstra,et al.  Big earth data analytics on Sentinel-1 and Landsat imagery in support to global human settlements mapping , 2017 .

[79]  Zhen Li,et al.  Modelling temporal variations in microwave backscattering from reed marshes , 2017 .

[80]  Zhengxiang Zhang,et al.  Mapping deciduous broad-leaved forested swamps using ALOS/Palsar data , 2016, Chinese Geographical Science.

[81]  M. Chakraborty,et al.  Discrimination between Babul plantations and Mustard crop using Polarimetric C- and L- band data , 2014, Journal of the Indian Society of Remote Sensing.

[82]  Philip Marzahn,et al.  SAR-based detection of flooded vegetation – a review of characteristics and approaches , 2018 .

[83]  Liang Fang,et al.  Analysis of ALOS PALSAR InSAR data for mapping water level changes in Yellow River Delta wetlands , 2013 .

[84]  Zhong Lu,et al.  Radarsat-1 and ERS InSAR Analysis Over Southeastern Coastal Louisiana: Implications for Mapping Water-Level Changes Beneath Swamp Forests , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[85]  Oliver Cartus,et al.  A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico , 2014, Remote. Sens..

[86]  E. Addink,et al.  Monitoring height and greenness of non-woody floodplain vegetation with UAV time series , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[87]  Ashbindu Singh,et al.  Status and distribution of mangrove forests of the world using earth observation satellite data , 2011 .

[88]  Ron Hagensieker,et al.  Evaluation of Multi-Frequency SAR Images for Tropical Land Cover Mapping , 2018, Remote. Sens..

[89]  Dieu Tien Bui,et al.  Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region , 2018, Environmental Earth Sciences.

[90]  Wataru Takeuchi,et al.  Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation , 2012 .

[91]  Bruce Allen Maxwell,et al.  The Coastal Zone — a Domain of Global Interactions , 2005 .

[92]  Arnaldo de Queiroz da Silva,et al.  Radargrammetric approaches to the flat relief of the amazon coast using COSMO-SkyMed and TerraSAR-X datasets , 2018, Isprs Journal of Photogrammetry and Remote Sensing.

[93]  Donghui Xie,et al.  Mapping Paddy Rice Area and Yields Over Thai Binh Province in Viet Nam From MODIS, Landsat, and ALOS-2/PALSAR-2 , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[94]  Shona K. Paterson,et al.  Earth observation applications for coastal sustainability: potential and challenges for implementation , 2019, Anthropocene Coasts.

[95]  N. Walker,et al.  Applications of Radarsat‐1 synthetic aperture radar imagery to assess hurricane‐related flooding of coastal Louisiana , 2005 .

[96]  Mahta Moghaddam,et al.  Mapping vegetated wetlands of Alaska using L-band radar satellite imagery , 2009 .

[97]  Jingjuan Liao,et al.  Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data , 2018, Sensors.

[98]  N. Samat,et al.  Urban Development Pressure: Challenges in Ensuring Sustainable Tourism Development in Langkawi Island☆ , 2013 .

[99]  Sandro Martinis,et al.  Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany , 2015, Remote. Sens..

[100]  A. Skidmore,et al.  Estimating tropical forest biomass more accurately by integrating ALOS PALSAR and Landsat-7 ETM+ data , 2013 .

[101]  Y. Inoue,et al.  Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis , 2007 .

[102]  Christian Thiel,et al.  Potential of Multi-Temporal ALOS-2 PALSAR-2 ScanSAR Data for Vegetation Height Estimation in Tropical Forests of Mexico , 2018, Remote. Sens..

[103]  Manfred Zink,et al.  The legacy of the SIR-C/X-SAR radar system: 25 years on , 2019, Remote Sensing of Environment.

[104]  Zachary M. Laubach,et al.  Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support , 2013 .

[105]  Bambang Supriadi,et al.  Backscattering characteristics of L-band polarimetric and optical satellite imagery over planted acacia forests in Sumatra, Indonesia , 2012 .

[106]  Alain Pietroniro,et al.  Towards operational monitoring of a northern wetland using geomatics-based techniques , 2005 .

[107]  Shu Gao,et al.  Dynamics of the Coastal Zone , 2005 .

[108]  W. Sea,et al.  Conservation of the Mekong Delta wetlands through hydrological management , 2017, Ecological Research.

[109]  Irena Hajnsek,et al.  Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications , 2013, Proceedings of the IEEE.

[110]  Iain H. Woodhouse,et al.  A "Matchstick Model" of microwave backscatter from a forest , 2012 .

[111]  Heiko Balzter,et al.  Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico , 2016 .

[112]  C. Kuenzer,et al.  Aquaculture: Relevance, distribution, impacts and spatial assessments – A review , 2016 .

[113]  T. Dixon,et al.  Space-Based Detection of Wetlands' Surface Water Level Changes from L-Band SAR Interferometry , 2008 .

[114]  Robert Woodruff,et al.  Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery , 1997 .

[115]  Rui Sun,et al.  Mapping Forest and Their Spatial–Temporal Changes From 2007 to 2015 in Tropical Hainan Island by Integrating ALOS/ALOS-2 L-Band SAR and Landsat Optical Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[116]  Zhong Lu,et al.  Limitations and Potential of Satellite Imagery to Monitor Environmental Response to Coastal Flooding , 2012 .

[117]  B. Anderson,et al.  The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones , 2007 .

[118]  Masanobu Shimada,et al.  Generating Large-Scale High-Quality SAR Mosaic Datasets: Application to PALSAR Data for Global Monitoring , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[119]  Thomas Blaschke,et al.  Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China , 2017 .

[120]  Jakob J. van Zyl,et al.  Analysis of Polarimetric Radar Data and Soil Moisture From Aquarius: Towards a Regression-Based Soil Moisture Estimation Algorithm , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[121]  John W. Holt,et al.  Mapping land cover types in Amazon basin using 1 km JERS-1 mosaic , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[122]  N. Dessay,et al.  Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data , 1999, Hydrobiologia.

[123]  Dimitrios G. Michelakis,et al.  Estimation of Woody Biomass of Pine Savanna Woodlands From ALOS PALSAR Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[124]  Shenghui Cui,et al.  Identifying the trade-offs between climate change mitigation and adaptation in urban land use planning: An empirical study in a coastal city. , 2019, Environment international.

[125]  Akanksha Garg,et al.  Development of an Efficient Contextual Algorithm for Discrimination of Tall Vegetation and Urban for PALSAR Data , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[126]  Manabu Watanabe,et al.  Generation of the first PALSAR-2 global mosaic 2014/2015 and change detection between 2007 and 2015 using the PALSAR and PALSAR-2 , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[127]  Hao Ling,et al.  Synthetic aperture radar imaging using a small consumer drone , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[128]  R. Eugene Turner,et al.  Carbon Sequestration and Sediment Accretion in San Francisco Bay Tidal Wetlands , 2012, Estuaries and Coasts.

[129]  Sassan Saatchi,et al.  The Global Rain Forest Mapping Project JERS-1 radar mosaic of tropical Africa: development and product characterization aspects , 2000, IEEE Trans. Geosci. Remote. Sens..

[130]  R. Lucas,et al.  Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery , 2013 .

[131]  Bruce R. Forsberg,et al.  The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain , 2002 .

[132]  Zhong Lu,et al.  Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter , 2014 .

[133]  Laura C. Feher,et al.  Climate and plant controls on soil organic matter in coastal wetlands , 2018, Global change biology.

[134]  C. Proisy,et al.  On the influence of canopy structure on the radar backscattering of mangrove forests , 2002 .

[135]  J. Carr,et al.  Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest , 1998 .

[136]  Masanobu Shimada,et al.  Mapping Regional Inundation with Spaceborne L-Band SAR , 2015, Remote. Sens..

[137]  Milton Kampel,et al.  Mapping of mangrove forests on the southern coast of São Paulo, Brazil, using synthetic aperture radar data from ALOS/PALSAR , 2012 .

[138]  Eric S. Kasischke,et al.  Monitoring South Florida Wetlands Using ERS-1 SAR Imagery , 1997 .

[139]  Brian Brisco,et al.  Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring , 2017, Remote. Sens..

[140]  D. Alsdorf,et al.  Interferometric radar measurements of water level changes on the Amazon flood plain , 2000, Nature.

[141]  Brian Brisco,et al.  Wetland Water Level Monitoring Using Interferometric Synthetic Aperture Radar (InSAR): A Review , 2018, Canadian Journal of Remote Sensing.

[142]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[143]  Joong-Sun Won,et al.  Interferometric Coherence Analysis of the Everglades Wetlands, South Florida , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[144]  Giriraj Amarnath,et al.  A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001-2016) for Flood Hazard Mapping in Sri Lanka , 2018, Remote. Sens..

[145]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[146]  Takeshi Motohka,et al.  Using time series PALSAR gamma nought mosaics for automatic detection of tropical deforestation: A test study in Riau, Indonesia , 2014 .

[147]  I. Valiela,et al.  Mangrove Forests: One of the World's Threatened Major Tropical Environments , 2001 .

[148]  N. Oppelt,et al.  Review of valuation methods for mangrove ecosystem services , 2012 .

[149]  R. Lucas,et al.  Aberystwyth University Distribution and Drivers of Global Mangrove Forest Change, 1996-2010 , 2017 .

[150]  Ting Yuan,et al.  Toward Estimating Wetland Water Level Changes Based on Hydrological Sensitivity Analysis of PALSAR Backscattering Coefficients over Different Vegetation Fields , 2015, Remote. Sens..

[151]  Fabio Del Frate,et al.  Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[152]  R. Suzuki,et al.  Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska , 2013 .

[153]  Brian Brisco,et al.  Evaluation of RADARSAT-2 Acquisition Modes for Wetland Monitoring Applications , 2015 .

[154]  Valentin Poncos,et al.  A new insight on the water level dynamics of the Danube Delta using a high spatial density of SAR measurements , 2013 .

[155]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[156]  José Claudio Mura,et al.  Mapping Macrophyte Species in the Amazon Floodplain Wetlands Using Fully Polarimetric ALOS/PALSAR Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[157]  Dorothy K. Hall,et al.  Remote sensing applications to hydrology: imaging radar , 1996 .

[158]  Olena Dubovyk,et al.  Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data , 2018 .

[159]  Elijah W. Ramsey,et al.  Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data , 2014 .

[160]  Andreas Walli,et al.  A highly automated algorithm for wetland detection using multi-temporal optical satellite data , 2019, Remote Sensing of Environment.

[161]  Stefan Dech,et al.  Comparing four operational SAR-based water and flood detection approaches , 2015 .

[162]  Huadong Guo,et al.  Reconstruction of the Water Cultivation Paleoenvironment Dating Back to the Han and Tang Dynasties Surrounding the Yangguan Frontier Pass Using X- and L-Band SAR Data , 2018, Remote. Sens..

[163]  Jean-Pierre Wigneron,et al.  Passive L-Band Microwave Remote Sensing of Organic Soil Surface Layers: A Tower-Based Experiment , 2018, Remote. Sens..

[164]  Catherine Ticehurst,et al.  Mapping the multi-decadal mangrove dynamics of the Australian coastline , 2020, Remote Sensing of Environment.

[165]  John R. Dymond,et al.  Support vector machine classification of woody patches in New Zealand from synthetic aperture radar and optical data, with LiDAR training , 2015 .

[166]  Claudia Notarnicola,et al.  Inferring Vegetation Water Content From C- and L-Band SAR Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[167]  Y. Yamagata,et al.  The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia , 2013 .

[168]  Masanobu Shimada,et al.  The Global Mangrove Watch - A New 2010 Global Baseline of Mangrove Extent , 2018, Remote. Sens..

[169]  Li Li,et al.  Mapping Oil Palm Plantations in Cameroon Using PALSAR 50-m Orthorectified Mosaic Images , 2015, Remote. Sens..

[170]  Steffen Gebhardt,et al.  Remote Sensing of Mangrove Ecosystems: A Review , 2011, Remote. Sens..

[171]  Min Kim,et al.  Sustainable Land-Use Planning to Improve the Coastal Resilience of the Social-Ecological Landscape , 2017 .

[172]  Diane L. Evans,et al.  Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) , 1995, IEEE Trans. Geosci. Remote. Sens..

[173]  Huadong Guo Spaceborne and Airborne SAR for Target Detection and Flood Monitoring , 2000 .

[174]  N. Shimizu,et al.  Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data , 2019, Advances in Space Research.

[175]  William A. Cornforth,et al.  Advanced Land Observing Satellite Phased Array Type L-Band SAR (ALOS PALSAR) to Inform the Conservation of Mangroves: Sundarbans as a Case Study , 2013, Remote. Sens..

[176]  Simon Plank,et al.  Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS-2/PALSAR-2 imagery , 2017 .

[177]  Maurizio Migliaccio,et al.  On the sensitivity of polarimetric SAR measurements to vegetation cover: the Coiba National Park, Panama , 2017 .

[178]  Benjamin W. Heumann Satellite remote sensing of mangrove forests: Recent advances and future opportunities , 2011 .

[179]  João Roberto dos Santos,et al.  Integration of Polarimetric PALSAR Attributes and Local Geomorphometric Variables Derived from SRTM for Forest Biomass Modeling in Central Amazonia , 2014 .

[180]  Eric S. Kasischke,et al.  Influence of incidence angle on detecting flooded forests using C-HH synthetic aperture radar data , 2008 .

[181]  Erich Meier,et al.  Analyzing Tomographic SAR Data of a Forest With Respect to Frequency, Polarization, and Focusing Technique , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[182]  V. Kerbaol,et al.  SAR-Derived coastal and marine applications: from research to operational products , 2005, IEEE Journal of Oceanic Engineering.

[183]  Takeshi Motohka,et al.  ALOS-4 current status , 2019, Remote Sensing.

[184]  Catherine Ticehurst,et al.  The potential of L‐band SAR for quantifying mangrove characteristics and change: case studies from the tropics , 2007 .

[185]  L. A. Trott,et al.  Modelling and Visualizing the Fate of Shrimp Pond Effluent in a Mangrove-fringed Tidal Creek , 2000 .

[186]  Seung-Bum Kim,et al.  Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[187]  Nicolas Baghdadi,et al.  Mapping of Central Africa Forested Wetlands Using Remote Sensing , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[188]  Emmanouil N. Anagnostou,et al.  Inundation Extent Mapping by Synthetic Aperture Radar: A Review , 2019, Remote. Sens..

[189]  Claudia Kuenzer,et al.  Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[190]  Thuy Le Toan,et al.  Forest Disturbances and Regrowth Assessment Using ALOS PALSAR Data from 2007 to 2010 in Vietnam, Cambodia and Lao PDR , 2016, Remote. Sens..

[191]  Brian Brisco,et al.  Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands , 2018 .

[192]  Masanobu Shimada,et al.  Regenerated ALOS-2/PALSAR-2 global mosaics 2016 and 2014/2015 for forest observations , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[193]  Andreas Schmitt,et al.  Wetland Monitoring Using the Curvelet-Based Change Detection Method on Polarimetric SAR Imagery , 2013 .

[194]  Jiancheng Shi,et al.  Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[195]  Sang-Hoon Hong,et al.  Multitemporal Multitrack Monitoring of Wetland Water Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric Processing , 2014, IEEE Geoscience and Remote Sensing Letters.

[196]  Juliane Huth,et al.  Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions - A Review , 2019, Remote. Sens..

[197]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[198]  N. Frazer,et al.  Sea-level rise exponentially increases coastal flood frequency , 2020, Scientific Reports.

[199]  Rasmus Fensholt,et al.  L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark , 2015, Remote. Sens..

[200]  James B Grace,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Beyond just sea-level rise: considering macroclimatic drivers Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate within coastal wetland vulnerability assessments to climate change change , 2022 .

[201]  João Catalão Fernandes,et al.  Insar Maps of Land Subsidence and Sea Level Scenarios to Quantify the Flood Inundation Risk in Coastal Cities: The Case of Singapore , 2020, Remote. Sens..

[202]  Andreas Rabe,et al.  Optimisation of Savannah Land Cover Characterisation with Optical and SAR Data , 2018, Remote. Sens..

[203]  Su Yean Teh,et al.  Conservation and restoration of mangroves: Global status, perspectives, and prognosis , 2018 .

[204]  Cathleen E. Jones,et al.  Inferring surface currents within submerged, vegetated deltaic islands and wetlands from multi-pass airborne SAR , 2018, Remote Sensing of Environment.

[205]  Christiane Schmullius,et al.  Large Area Mapping of Boreal Growing Stock Volume on an Annual and Multi-Temporal Level Using PALSAR L-Band Backscatter Mosaics , 2014 .

[206]  Youngwook Kim,et al.  Developing a Global Data Record of Daily Landscape Freeze/Thaw Status Using Satellite Passive Microwave Remote Sensing , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[207]  Hui Lin,et al.  Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest , 2018, Remote. Sens..

[208]  Chandra Shekhar Jha,et al.  Forest type classification with combination of advanced polarimetric decompositions and textures of L-band synthetic aperture radar data , 2017 .

[209]  Huadong Guo,et al.  Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks , 2014 .

[210]  Irena Hajnsek,et al.  Investigation of SMAP Fusion Algorithms With Airborne Active and Passive L-Band Microwave Remote Sensing , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[211]  Bai Zhang,et al.  Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data , 2017 .

[212]  Thomas Schmid,et al.  Evaluating Full Polarimetric C- and L-Band Data for Mapping Wetland Conditions in a Semi-Arid Environment in Central Spain , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[213]  Wataru Takeuchi,et al.  Using multiscale texture information from ALOS PALSAR to map tropical forest , 2012 .

[214]  I. Woodhouse,et al.  Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter , 2011 .

[215]  N. Saintilan,et al.  Climate Change Impacts on the Coastal Wetlands of Australia , 2018, Wetlands.

[216]  Philip A. Townsend,et al.  Mapping Seasonal Flooding in Forested Wetlands Using Multi-Temporal Radarsat SAR , 2001 .

[217]  F. Baup,et al.  Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite data , 2016 .

[218]  Patrick Oswald,et al.  Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes , 2018, Remote. Sens..

[219]  Jiancheng Shi,et al.  Estimation of Vegetation Parameters of Water Cloud Model for Global Soil Moisture Retrieval Using Time-Series L-Band Aquarius Observations , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[220]  Maycira Costa,et al.  Large-scale habitat mapping of the Brazilian Pantanal wetland: A synthetic aperture radar approach , 2014 .

[221]  Fernando Pellon de Miranda,et al.  Tectonic fault control of wetland distributions in the Central Amazon revealed by JERS-1 radar imagery , 2000 .

[222]  Achim Roth,et al.  Assessing Single-Polarization and Dual-Polarization TerraSAR-X Data for Surface Water Monitoring , 2018, Remote. Sens..

[223]  Manabu Watanabe,et al.  Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2 , 2014 .

[224]  Bangsen Tian,et al.  A method for monitoring hydrological conditions beneath herbaceous wetlands using multi-temporal ALOS PALSAR coherence data , 2015 .

[225]  Xin Wang,et al.  Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia , 2013, Remote. Sens..

[226]  C. E. Jones,et al.  Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA) , 2017, Scientific Reports.

[227]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[228]  Tien Dat Pham,et al.  Aboveground biomass estimation of mangrove species using ALOS-2 PALSAR imagery in Hai Phong City, Vietnam , 2017 .