Further studies on the catalytic mechanism of human liver α-l-fucosidase

[1]  K. Schray,et al.  Active-site-directed inactivation of human liver α-l-fucosidase by conduritol C trans-epoxide , 1986 .

[2]  I. Damjanov,et al.  Isoelectric Focusing of α-l-Fucosidase From Human Embryonal Carcinoma , 1986 .

[3]  I. Damjanov,et al.  Characterization of mouse liver alpha-L-fucosidase. Demonstration of unusual basic isoelectric forms of the enzyme that appear to be developmentally regulated. , 1985, The Biochemical journal.

[4]  K. Schray,et al.  Studies on the catalytic residues at the active site of human liver α-l-fucosidase , 1985 .

[5]  G. Legler,et al.  Identification of an essential carboxylate group at the active site of lacZ beta-galactosidase from Escherichia coli. , 1984, European journal of biochemistry.

[6]  D. Grove,et al.  Porcine thyroid fucosidase. , 1981, Biochimica et biophysica acta.

[7]  G. Legler,et al.  Active site‐directed inhibition of galactosidases by conduritol C epoxides (1,2‐anhydro‐EPI‐and NEO‐inositol , 1981, FEBS letters.

[8]  A. Shashkov,et al.  Specificity patterns of different types of human fucosidase. Recognition of a certain region of the pyranose ring in sugars by the enzymes. , 1981, Biochimica et biophysica acta.

[9]  J. Alhadeff,et al.  Thermostability of human α-l-fucosidase. Relationship to fucosidosis and low-activity serum α-l-fucosidase , 1980 .

[10]  J. Alhadeff,et al.  Subunit composition of human liver alpha-L-fucosidase. , 1979, The Biochemical journal.

[11]  W. Cleland [20] Substrate inhibition , 1979 .

[12]  T. Alam,et al.  The purification, properties and characterization of three forms of alpha-L-fucosidase from monkey brain. , 1978, Biochimica et biophysica acta.

[13]  A. Fink Cryoenzymology: the study of enzyme mechanisms at subzero temperatures , 1977 .

[14]  T. Vedvick,et al.  Human liver alpha-L-fucosidase. Purification, characterization, and immunochemical studies. , 1975, The Journal of biological chemistry.

[15]  G. Semenza,et al.  Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine. , 1974, The Journal of biological chemistry.

[16]  A. Kresge Communication - Solvent Isotope Effects and the Mechanism of Chymotrysin Action , 1973 .

[17]  M. Sinnott,et al.  The mechanism of action of beta-galactosidase. Effect of aglycone nature and -deuterium substitution on the hydrolysis of aryl galactosides. , 1973, The Biochemical journal.

[18]  N. Sharon,et al.  The synthesis of methyl 2,4-diacetamido-2,4,6-trideoxy hexopyranosides. , 1972, The Journal of organic chemistry.

[19]  G. Legler Untersuchungen zum Wirkungsmechanismus glykosidspaltender Enzyme, V. Markierung des aktiven Zentrums der β-Glucosidasen A und B aus dem Süßmandel-Emulsin mit [3H]6-Brom-6-desoxy-condurit-B-epoxid , 1970 .

[20]  F. Dahlquist,et al.  Application of secondary alpha-deuterium kinetic isotope effects to studies of enzyme catalysis. Glycoside hydrolysis by lysozyme and beta-glucosidase. , 1969, Biochemistry.

[21]  S. Roseman,et al.  Isolation of diphosphopyridine nucleotide-dependent L-fucose dehydrogenase from pork liver. , 1969, The Journal of biological chemistry.

[22]  J. A. Rupley,et al.  Lysozyme catalysis. Evidence for a carbonium ion intermediate and participation of glutamic acid 35. , 1968, Journal of the American Chemical Society.

[23]  J. D. Stevens,et al.  THE PROTON MAGNETIC RESONANCE SPECTRA AND TAUTOMERIC EQUILIBRIA OF ALDOSES IN DEUTERIUM OXIDE , 1966 .

[24]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[25]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.