Microbial Diversity at a Deep-Sea Station of the Pacific Nodule Province

[1]  K. Horikoshi,et al.  Bacterial diversity in deep-sea sediments from different depths , 1999, Biodiversity & Conservation.

[2]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[3]  J. Bowman,et al.  Biodiversity, Community Structural Shifts, and Biogeography of Prokaryotes within Antarctic Continental Shelf Sediment , 2003, Applied and Environmental Microbiology.

[4]  K. Nealson,et al.  Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. , 2002, FEMS microbiology ecology.

[5]  E. Stackebrandt,et al.  Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. , 2002, International journal of systematic and evolutionary microbiology.

[6]  F. Rohwer,et al.  Use of 16S Ribosomal DNA for Delineation of Marine Bacterioplankton Species , 2002, Applied and Environmental Microbiology.

[7]  Lawrence O. Ticknor,et al.  Empirical and Theoretical Bacterial Diversity in Four Arizona Soils , 2002, Applied and Environmental Microbiology.

[8]  B. Tebo,et al.  Enzymatic Manganese(II) Oxidation by Metabolically Dormant Spores of Diverse Bacillus Species , 2002, Applied and Environmental Microbiology.

[9]  H. Cypionka,et al.  Microbial Communities in the Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea) , 2001, Applied and Environmental Microbiology.

[10]  K. Horikoshi,et al.  Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment , 2001, Extremophiles.

[11]  K. Nealson,et al.  Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. , 2001, Environmental microbiology.

[12]  J. Bowman Methods for psychrophilic bacteria , 2001 .

[13]  G. Muyzer,et al.  Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents , 2000, Applied and Environmental Microbiology.

[14]  T. Kudo,et al.  Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. , 2000, Biomacromolecules.

[15]  A. Maruyama,et al.  Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[16]  B. Tebo,et al.  Dissimilatory Metal Reduction by the Facultative Anaerobe Pantoea agglomerans SP1 , 2000, Applied and Environmental Microbiology.

[17]  K. Horikoshi,et al.  Genetic diversity of archaea in deep-sea hydrothermal vent environments. , 1999, Genetics.

[18]  K. Horikoshi,et al.  Microbial Diversity in Sediments Collected from the Deepest Cold-Seep Area, the Japan Trench , 1999, Marine Biotechnology.

[19]  P. Talaga,et al.  Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. , 1999, Carbohydrate research.

[20]  K. Horikoshi,et al.  Biodiversity in deep-sea sites located near the south part of Japan , 1999, Extremophiles.

[21]  C. Kato,et al.  Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. , 1999, FEMS microbiology letters.

[22]  K. Horikoshi,et al.  Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. , 1998, Archives of Microbiology.

[23]  Rebekka R. E. Artz,et al.  University of Groningen Association of marine archaea with the digestive tracts of two marine fish species , 2017 .

[24]  F. Brockman,et al.  Phylogenetic Diversity of Archaea and Bacteria in a Deep Subsurface Paleosol , 1998, Microbial Ecology.

[25]  K. Horikoshi,et al.  Extremely Barophilic Bacteria Isolated from the Mariana Trench, Challenger Deep, at a Depth of 11,000 Meters , 1998, Applied and Environmental Microbiology.

[26]  K. Horikoshi,et al.  Molecular analyses of the sediment of the 11000-m deep Mariana Trench , 1997, Extremophiles.

[27]  E. Delong,et al.  Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel , 1997, Applied and environmental microbiology.

[28]  K. Nealson,et al.  Sediment bacteria: who's there, what are they doing, and what's new? , 1997, Annual review of earth and planetary sciences.

[29]  United Nations: Agreement Relating to the Implementation of Part XI of the United Nations Convention on the Law of the Sea of 10 December 1982 , 1994, International Legal Materials.

[30]  A. Gounot,et al.  Microbial oxidation and reduction of manganese: consequences in groundwater and applications. , 1994, FEMS microbiology reviews.

[31]  K. Nealson,et al.  Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. , 1994, Annual review of microbiology.

[32]  C. Batt,et al.  Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria , 1993, Applied and environmental microbiology.

[33]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Lovley Dissimilatory Fe(III) and Mn(IV) reduction , 1991, Microbiological reviews.

[35]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[36]  W. Ghiorse Biology of iron- and manganese-depositing bacteria. , 1984, Annual review of microbiology.

[37]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[38]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.