Linear Clique-Width of Bi-complement Reducible Graphs
暂无分享,去创建一个
[1] Udi Rotics,et al. Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..
[2] Pinar Heggernes,et al. Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..
[3] Martin Charles Golumbic,et al. Trivially perfect graphs , 1978, Discret. Math..
[4] Vadim V. Lozin,et al. The Clique-Width of Bipartite Graphs in Monogenic Classes , 2008, Int. J. Found. Comput. Sci..
[5] Konrad Dabrowski,et al. Classifying the clique-width of H-free bipartite graphs , 2016, Discret. Appl. Math..
[6] Dieter Rautenbach,et al. Chordal bipartite graphs of bounded tree- and clique-width , 2004, Discret. Math..
[7] V. Giakoumakis,et al. Bi-complement Reducible Graphs , 1997 .
[8] Vadim V. Lozin,et al. Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.
[9] Robert Brignall,et al. Linear Clique-Width for Hereditary Classes of Cographs , 2017, J. Graph Theory.
[10] Vadim V. Lozin,et al. Infinitely many minimal classes of graphs of unbounded clique-width , 2018, Discret. Appl. Math..
[11] Mamadou Moustapha Kanté,et al. Linear rank-width and linear clique-width of trees , 2015, Theor. Comput. Sci..
[12] Gerard J. Chang,et al. Quasi-threshold Graphs , 1996, Discret. Appl. Math..
[13] Konrad Dabrowski,et al. Bounding the clique-width of H-free split graphs , 2015, Discret. Appl. Math..
[14] Pinar Heggernes,et al. Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs , 2012, Discret. Appl. Math..
[15] Egon Wanke,et al. On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..