Intramolecular solvation effects in the SN2 reaction Cl−+Cl(CH2)nCN

The chemical reactions Cl−+Cl(CH2)nCN (n=2–5) have been studied with ab initio molecular dynamics. The effects of the cyano group on the energy profile of the reactions as the length of the alkilic chain increases have been discussed in terms of electrostatics of the systems. The thermal effects have been computed in the Blue Moon Ensemble showing a large influence on the energy barriers. It has been shown that six membered hydrogen-bonded pre-reactive complexes are stable even at room temperature. The results of the simulation allow for an explanation for the increased reactivity of these systems compared to the parent Cl−+Cl(CH2)nCH3 reactions.

[1]  Wolfram Saenger,et al.  INITIAL STATE OF AN ENZYMATIC REACTION. THEORETICAL PREDICTION OF COMPLEX FORMATION IN THE ACTIVE SITE OF RNASE T1 , 1995 .

[2]  Christoph Dellago,et al.  Ab initio analysis of proton transfer dynamics in (H2O)3H , 2000 .

[3]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[4]  B. Silvi,et al.  Does the topological approach characterize the hydrogen bond? , 2000 .

[5]  G. Ciccotti,et al.  Activation energies by molecular dynamics with constraints , 1991 .

[6]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[7]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[8]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[9]  Gianni Cardini,et al.  Substitution and Elimination Reaction of F- with C2H5Cl: An ab Initio Molecular Dynamics Study , 2003 .

[10]  J. I. Brauman,et al.  The SN2 Identity Exchange Reaction 37Cl- + 35ClCH2CN .fwdarw. 35Cl- + 37ClCH2CN: Kinetic Energy and Temperature Dependence , 1994 .

[11]  Michele Parrinello,et al.  Simulating complex systems without adjustable parameters , 2000, Comput. Sci. Eng..

[12]  J. I. Brauman,et al.  Intramolecular Microsolvation of Thermoneutral Gas-Phase SN2 Reactions , 1996 .

[13]  M. Pagliai,et al.  Car-parrinello molecular dynamics on the SN2 reaction Cl- + CH3Br in water , 2003 .

[14]  M. Pagliai,et al.  Thermal effects on the Cl−+ClCH2CN reaction by Car-Parrinello molecular dynamics , 2002 .

[15]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[16]  W. Hase,et al.  Trajectory studies of SN2 nucleophilic substitution. III. Dynamical stereochemistry and energy transfer pathways for the Cl−+CH3Cl association and direct substitution reactions , 1993 .

[17]  C. Dellago,et al.  Transition path sampling and the calculation of rate constants , 1998 .

[18]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[19]  Fred A. Hamprecht,et al.  Development and assessment of new exchange-correlation functionals , 1998 .

[20]  W. Hase,et al.  Trajectory studies of SN2 nucleophilic substitution. II. Nonstatistical central barrier recrossing in the Cl−+CH3Cl system , 1992 .

[21]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[22]  M. Sprik,et al.  Ab initio molecular dynamics study of the reaction of water with formaldehyde in sulfuric acid solution. , 1998 .

[23]  E. Meijer,et al.  A Density Functional Study of the Addition of Water to SO3 in the Gas Phase and in Aqueous Solution , 1998 .

[24]  P. Krüger,et al.  Free energy as the potential of mean constraint force , 1996 .

[25]  Hans-Christian Hege,et al.  Visualizing and identifying conformational ensembles in molecular dynamics trajectories , 2002, Comput. Sci. Eng..

[26]  Kihyung Song,et al.  Trajectory Studies of SN2 Nucleophilic Substitution. 8. Central Barrier Dynamics for Gas Phase Cl- + CH3Cl , 2001 .

[27]  Christoph Dellago,et al.  On the calculation of reaction rate constants in the transition path ensemble , 1999 .

[28]  G. Cardini,et al.  An ab initio molecular dynamics study of the SN2 reaction Cl−+CH3Br→CH3Cl+Br− , 1999 .

[29]  G. Cardini,et al.  Microsolvation effect on chemical reactivity: The case of the Cl−+CH3Br SN2 reaction , 2001 .

[30]  Maximally-localized Wannier functions for disordered systems: application to amorphous silicon , 1998, cond-mat/9804019.

[31]  Jon K. Laerdahl,et al.  Gas phase nucleophilic substitution , 2002 .

[32]  Bernd Ensing,et al.  Solvation Effects on the SN2 Reaction between CH3Cl and Cl- in Water , 2001 .

[33]  M. Pagliai,et al.  Ab-initio molecular dynamics study of the SN2 reaction Cl-+ClCH2CN , 2001 .

[34]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[35]  J. I. Brauman,et al.  Perturbed Equilibria and Statistical Energy Redistribution in a Gas-Phase SN2 Reaction , 1997 .

[36]  W. Hase,et al.  Trajectory studies of SN2 nucleophilic substitution. I. Dynamics of Cl−+CH3Cl reactive collisions , 1990 .

[37]  G. Cardini,et al.  An ab initio molecular dynamics study of the SN2 reaction F−+CH3Cl→CH3F+Cl− , 2003 .

[38]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[39]  J. Tse,et al.  Ab initio molecular dynamics with density functional theory. , 2003, Annual review of physical chemistry.

[40]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[41]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[42]  W. Hase,et al.  TRAJECTORY STUDIES OF SN2 NUCLEOPHILIC SUBSTITUTION. 5. SEMIEMPIRICAL DIRECT DYNAMICS OF CL- ---CH3BR UNIMOLECULAR DECOMPOSITION , 1996 .

[43]  D. J. Mann,et al.  Trajectory Studies of SN2 Nucleophilic Substitution. 6. Translational Activation of the Cl- + CH3Cl Reaction , 1998 .

[44]  Barnett,et al.  Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. , 1993, Physical review. B, Condensed matter.

[45]  Tom Ziegler,et al.  First-Principle Molecular Dynamic Simulations along the Intrinsic Reaction Paths , 2001 .

[46]  M. Pagliai,et al.  Car-Parrinello molecular dynamics of the SN2 reaction Cl- + Cl2CH2 , 2001 .

[47]  J. I. Brauman,et al.  Intramolecular Microsolvation of SN2 Transition States , 1999 .

[48]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[49]  Chang Kon Kim,et al.  Theoretical Studies of Competitive Gas-Phase SN2 and E2 Reactions of NCCH2CH2Cl with OH- and SH- , 1997 .

[50]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[51]  Michiel Sprik,et al.  Coordination numbers as reaction coordinates in constrained molecular dynamics , 1998 .

[52]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.