Dispersive and Dissipative Behavior of the Spectral Element Method

If the nodes for the spectral element method are chosen to be the Gauss-Legendre-Lobatto points and a Lagrange basis is used, then the resulting mass matrix is diagonal and the method is sometimes then described as the Gauss-point mass lumped finite element scheme. We study the dispersive behavior of the scheme in detail and provide both a qualitative description of the nature of the dispersive and dissipative behavior of the scheme along with precise quantitative statements of the accuracy in terms of the mesh-size and the order of the scheme. We prove that (a) the Gauss-point mass lumped scheme (i.e., spectral element method) tends to exhibit phase lag whereas the (consistent) finite element scheme tends to exhibit phase lead; (b) the absolute accuracy of the spectral element scheme is $1/p$ times better than that of the finite element scheme despite the use of numerical integration; (c) when the order $p$, the mesh-size $h$, and the frequency of the wave $\omega$ satisfy $2p+1 \approx \omega h$ the true wave is essentially fully resolved. As a consequence, one obtains a proof of the general rule of thumb sometimes quoted in the context of spectral element methods: $\pi$ modes per wavelength are needed to resolve a wave.

[1]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[2]  Mark A. J. Chaplain,et al.  An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .

[3]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[4]  P. Pinsky,et al.  Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .

[5]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[6]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[7]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[8]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .

[9]  W. Hundsdorfer,et al.  Stability estimates based on numerical ranges with an application to a spectral method , 1994 .

[10]  Ivo Babuška,et al.  Reliability of infinite element methods for the numerical computation of waves , 1997 .

[11]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[12]  F. Olver Asymptotics and Special Functions , 1974 .

[13]  A. Ralston A first course in numerical analysis , 1965 .

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[16]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[17]  Luca F. Pavarino,et al.  An explicit second order spectral element method for acoustic waves , 2006, Adv. Comput. Math..

[18]  David A. Kopriva,et al.  Dispersion Analysis for Discontinuous Spectral Element Methods , 2000, J. Sci. Comput..

[19]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[20]  橋本 英典,et al.  A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .

[21]  Peter Monk,et al.  Mur-nédélec finite element schemes for Maxwell's equations , 1999 .

[22]  Dale B. Haidvogel,et al.  A three-dimensional spectral element model for the solution of the hydrostatic primitive equations , 2003 .

[23]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[24]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[25]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[26]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[27]  P. Monk,et al.  Gauss Point Mass Lumping Schemes for Maxwell's Equations , 1998 .

[28]  P. B. MONK,et al.  A Dispersion Analysis of Finite Element Methods for Maxwell's Equations , 1994, SIAM J. Sci. Comput..

[29]  Luca F. Pavarino,et al.  Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods , 2006 .

[30]  M. Ainsworth Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Jens Markus Melenk,et al.  hp FEM for reaction-diffusion equations , 1997 .

[32]  M. Jensen,et al.  HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX , 1996 .

[33]  Jens Markus Melenk,et al.  hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .

[34]  Gary H. Cohen,et al.  Non Spurious Spectral-Like Element Methods for Maxwell's Equations , 2007 .

[35]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.