Dispersive and Dissipative Behavior of the Spectral Element Method
暂无分享,去创建一个
[1] Mark Ainsworth,et al. Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..
[2] Mark A. J. Chaplain,et al. An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .
[3] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[4] P. Pinsky,et al. Complex wavenumber Fourier analysis of the p-version finite element method , 1994 .
[5] G. Cohen,et al. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[6] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .
[7] I. Babuska,et al. Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .
[8] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation , 2002 .
[9] W. Hundsdorfer,et al. Stability estimates based on numerical ranges with an application to a spectral method , 1994 .
[10] Ivo Babuška,et al. Reliability of infinite element methods for the numerical computation of waves , 1997 .
[11] Mark Ainsworth,et al. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .
[12] F. Olver. Asymptotics and Special Functions , 1974 .
[13] A. Ralston. A first course in numerical analysis , 1965 .
[14] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[15] Mark Ainsworth,et al. Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..
[16] Claudio Canuto,et al. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .
[17] Luca F. Pavarino,et al. An explicit second order spectral element method for acoustic waves , 2006, Adv. Comput. Math..
[18] David A. Kopriva,et al. Dispersion Analysis for Discontinuous Spectral Element Methods , 2000, J. Sci. Comput..
[19] Gary Cohen. Higher-Order Numerical Methods for Transient Wave Equations , 2001 .
[20] 橋本 英典,et al. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi ; Higher Transcendental Functions, Vols. I, II, III. McGraw-Hill, New York-Toronto-London, 1953, 1953, 1955. xxvi+302, xvii+396, xvii+292頁. 16×23.5cm. $6.50, $7.50, $6.50. , 1955 .
[21] Peter Monk,et al. Mur-nédélec finite element schemes for Maxwell's equations , 1999 .
[22] Dale B. Haidvogel,et al. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations , 2003 .
[23] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[24] Joseph Lipka,et al. A Table of Integrals , 2010 .
[25] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering , 1998 .
[26] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[27] P. Monk,et al. Gauss Point Mass Lumping Schemes for Maxwell's Equations , 1998 .
[28] P. B. MONK,et al. A Dispersion Analysis of Finite Element Methods for Maxwell's Equations , 1994, SIAM J. Sci. Comput..
[29] Luca F. Pavarino,et al. Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods , 2006 .
[30] M. Ainsworth. Dispersive properties of high–order Nédélec/edge element approximation of the time–harmonic Maxwell equations , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[31] Jens Markus Melenk,et al. hp FEM for reaction-diffusion equations , 1997 .
[32] M. Jensen,et al. HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX , 1996 .
[33] Jens Markus Melenk,et al. hp FEM for Reaction-Diffusion Equations I: Robust Exponential Convergence , 1998 .
[34] Gary H. Cohen,et al. Non Spurious Spectral-Like Element Methods for Maxwell's Equations , 2007 .
[35] D. Komatitsch,et al. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.