The Interaction of Light and Graphene: Basics, Devices, and Applications

Graphene is a monolayer of carbon atoms arranged in a honey-comb lattice: atomically thin, light, flexible, mechanically strong, visually transparent, electrically tunable, and highly conductive if doped. Graphene also interacts with light strongly from the microwave range to the ultraviolet, spanning wavelengths of at least five orders of magnitude. Such strong light-graphene interaction, together with its exceptional electronic and mechanical properties, makes graphene a promising candidate for various photonic applications. The early part of this paper addresses the physics of light-graphene interaction under a single-electron approximation, followed by a discussion of light excitation of collective oscillations of the carriers, i.e., plasmons in graphene. A variety of photonic devices operating in different wavelength ranges based on the two different light-graphene interaction mechanisms discussed above, such as photodetectors, optical modulators, electromagnetic wave shieldings, notch filters, and linear polarizers are then covered. Finally, we discuss the future directions for graphene photonics research.

[1]  S. Sarma,et al.  Collective excitations in semiconductor superlattices , 1982 .

[2]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[3]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[4]  P. Ajayan,et al.  Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene , 2012, Nature Communications.

[5]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[6]  M. C. Martin,et al.  Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene , 2009, 0903.0577.

[7]  V. Ryzhii,et al.  Oblique terahertz plasmons in graphene nanoribbon arrays , 2010 .

[8]  F. Rana Electron-hole generation and recombination rates for Coulomb scattering in graphene , 2007, 0705.1204.

[9]  Büttiker,et al.  Absence of backscattering in the quantum Hall effect in multiprobe conductors. , 1988, Physical review. B, Condensed matter.

[10]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[11]  D. Veksler,et al.  Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible , 2008, 0801.3302.

[12]  M. Potemski,et al.  Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene , 2010, 1007.4153.

[13]  J. Schmalian,et al.  Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. , 2011, Physical review letters.

[14]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[15]  F. Xia,et al.  Ultracompact optical buffers on a silicon chip , 2007 .

[16]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[17]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[18]  A. Saidane The Physics of Low-dimensional Semiconductors: An Introduction; J.H. Davies, Cambridge University Press, UK, ISBN 0-521-48491-X, $44.95 , 2000 .

[19]  Leavitt,et al.  Absorption and emission of radiation by plasmons in two-dimensional electron-gas disks. , 1986, Physical review. B, Condensed matter.

[20]  Vladimir I Fal'ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2006, Physical review letters.

[21]  I Gaponenko,et al.  Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. , 2012, Nano letters.

[22]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[23]  V. Ryzhii,et al.  Terahertz and Infrared Photodetection Using p-i-n Multiple-Graphene-Layer Structures * , 2009, Graphene-Based Terahertz Electronics and Plasmonics.

[24]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[25]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[26]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[27]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[28]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[29]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[30]  A. Bostwick,et al.  Giant Faraday rotation in single- and multilayer graphene , 2010, 1007.5286.

[31]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[32]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[33]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[34]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[35]  G. Vignale,et al.  Drude weight, plasmon dispersion, and a.c. conductivity in doped graphene sheets , 2011, 1101.4291.

[36]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[37]  Kentaro Nomura,et al.  Quantum transport of massless Dirac fermions. , 2007, Physical review letters.

[38]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[39]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[40]  D. C. Tsui,et al.  Observation of the Two-Dimensional Plasmon in Silicon Inversion Layers , 1977 .

[41]  G. Burkard,et al.  Spin qubits in graphene quantum dots , 2006, cond-mat/0611252.

[42]  S Das Sarma,et al.  Collective modes of the massless dirac plasma. , 2009, Physical review letters.

[43]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[44]  Aaron M. Jones,et al.  Ultrafast hot-carrier-dominated photocurrent in graphene. , 2012, Nature nanotechnology.

[45]  Howard Milchberg,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2012, Nature nanotechnology.

[46]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[47]  Wenjuan Zhu,et al.  Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. , 2012, Nano letters.

[48]  William W. Clark,et al.  Device physics and focal plane array applications of QWIP and MCT , 1999, Photonics West.

[49]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[50]  Oskar Vafek Thermoplasma polariton within scaling theory of single-layer graphene. , 2006, Physical review letters.

[51]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[52]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[53]  V. Ryzhii,et al.  Interplay of intra- and interband absorption in a disordered graphene , 2012, 1210.6304.

[54]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[55]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[56]  P. Studenkov,et al.  An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler , 2001, IEEE Photonics Technology Letters.

[57]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[58]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[59]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[60]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[61]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[62]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[63]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[64]  Masayoshi Tonouchi,et al.  Terahertz and infrared spectroscopy of gated large-area graphene. , 2012, Nano letters.

[65]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[66]  Takashi Taniguchi,et al.  Hot Carrier–Assisted Intrinsic Photoresponse in Graphene , 2011, Science.

[67]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[68]  F. Xia,et al.  Role of contacts in graphene transistors: A scanning photocurrent study , 2009 .

[69]  H. L. Stormer,et al.  Dimensional resonance of the two-dimensional electron gas in selectively doped GaAs/AlGaAs heterostructures , 1983 .

[70]  L.brey,et al.  Elementary Electronic Excitations in Graphene Nanoribbons , 2007, cond-mat/0701787.

[71]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[72]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[73]  F. Xia The interaction of light and graphene: Basics, devices and applications , 2013, 2013 IEEE Photonics Conference.

[74]  F. T. Vasko,et al.  Voltage and temperature dependencies of conductivity in gated graphene , 2007, 0708.2976.

[75]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[76]  M. S. Shur,et al.  Graphene terahertz uncooled bolometers , 2012, 1210.0174.

[77]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[78]  V. Ryzhii Terahertz Plasma Waves in Gated Graphene Heterostructures , 2006 .

[79]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[80]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[81]  尾辻 泰一 Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures , 2007 .

[82]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.