Kirigami Auxetic Pyramidal Core: Mechanical Properties and Wave Propagation Analysis in Damped Lattice

The work describes the manufacturing, mechanical properties, and wave propagation characteristics of a pyramidal lattice made exhibiting an auxetic (negative Poisson's ratio) behavior. Contrary to similar lattice tessellations produced using metal cores, the pyramidal lattice described in this work is manufactured using a kirigami (origami pluscutting pattern) technique, which can be applied to a large variety of thermoset and thermoplastic composites. Due to the particular geometry created through this manufacturing technique, the kirigami pyramidal lattice shows an inversion between in-plane and out-of-plane mechanical properties compared to classical honeycomb configurations. Long wavelength approximations are used to calculate the slowness curves, showing unusual zero-curvature phononic properties in the transverse plane. A novel 2D wave propagation technique based on Bloch waves for damped structures is also applied to evaluate the dispersion behavior of composite (Kevlar/epoxy) lattices with intrinsic hysteretic loss. The 2D wave propagation analysis shows evanescence directivity at different frequency bandwidths and complex modal behavior due to unusual deformation mechanism of the lattice.

[1]  M. Leamy,et al.  Analysis of Bloch’s Method in Structures with Energy Dissipation , 2011 .

[2]  Mohamed Ichchou,et al.  Wave motion in thin-walled structures , 2005 .

[3]  Mahmoud I. Hussein,et al.  Band structure of phononic crystals with general damping , 2010 .

[4]  M. Ruzzene,et al.  Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process , 2010 .

[5]  Mohamed Ichchou,et al.  Multi-mode propagation and diffusion in structures through finite elements , 2005 .

[6]  Mohamed Ichchou,et al.  Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures , 2009 .

[7]  M. Kozlov,et al.  Modeling the auxetic transition for carbon nanotube sheets , 2008, 0903.2892.

[8]  H. Wadley Multifunctional periodic cellular metals , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Massimo Ruzzene,et al.  Analysis of in-plane wave propagation in hexagonal and re-entrant lattices , 2008 .

[10]  Fabrizio Scarpa,et al.  Numerical and experimental uniaxial loading on in-plane auxetic honeycombs , 2000 .

[11]  J. Berthelot,et al.  Damping analysis of composite materials and structures , 2008 .

[12]  S. Nemat-Nasser,et al.  Overall dynamic properties of three-dimensional periodic elastic composites , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[14]  Massimo Ruzzene,et al.  Wave Propagation in Auxetic Tetrachiral Honeycombs , 2010 .

[15]  A. Norris,et al.  Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  N. Fleck,et al.  Collapse mechanism maps for a hollow pyramidal lattice , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Joseph N. Grima,et al.  Modelling of auxetic networked polymers built from calix[4]arene building blocks , 2005 .

[18]  Douglas T. Queheillalt,et al.  Pyramidal lattice truss structures with hollow trusses , 2005 .

[19]  Gregory M. Odegard,et al.  Constitutive Modeling of Piezoelectric Polymer Composites , 2004 .

[20]  Massimo Ruzzene,et al.  The hexachiral prismatic wingbox concept , 2008 .

[21]  J. R. Willis,et al.  Effective constitutive relations for waves in composites and metamaterials , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  Taketoshi Nojima,et al.  Development of Newly Designed Ultra-Light Core Structures , 2006 .

[23]  M. Hussein Theory of damped Bloch waves in elastic media , 2009 .

[24]  Mei Zhang,et al.  Sign Change of Poisson's Ratio for Carbon Nanotube Sheets , 2008, Science.

[25]  Mohamed Ichchou,et al.  Guided waves group and energy velocities via finite elements , 2007 .

[26]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[27]  L. Gavric Computation of propagative waves in free rail using a finite element technique , 1995 .

[28]  Fabrizio Scarpa,et al.  A Cellular Kirigami Morphing Wingbox Concept , 2011 .

[29]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[30]  Haydn N. G. Wadley,et al.  Titanium alloy lattice truss structures , 2009 .

[31]  Waldemar Maysenhölder Körperschallenergie : Grundlagen zur Berechnung von Energiedichten und Intensitäten , 1994 .

[32]  M. Ruzzene,et al.  Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems ☆ , 2011 .

[33]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[34]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  V. Laude,et al.  Material loss influence on the complex band structure and group velocity in phononic crystals , 2011 .

[36]  Adnan H. Nayfeh,et al.  Wave propagation in layered anisotropic media : with applications to composites , 1995 .

[37]  Alessandro Spadoni,et al.  Numerical and experimental analysis of the static compliance of chiral truss-core airfoils , 2007 .