DNF Sparsification and a Faster Deterministic Counting Algorithm

We give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a \dnf\ or \cnf. Given a \dnf (or \cnf) $f$ on $n$ variables and $\poly(n)$ terms, we give a deterministic $n^{\tilde{O}((\log \log n)^2)}$ time algorithm that computes an (additive) $\epsilon$ approximation to the fraction of satisfying assignments of $f$ for $\epsilon = 1/\poly(\log n)$. The previous best algorithm due to Luby and Velickovic from nearly two decades ago had a run-time of $n^{\exp(O(\sqrt{\log \log n}))}$. A crucial ingredient in our algorithm is a structural result which allows us to sparsify any small-width \dnf formula. It says that any width $w$ \dnf (irrespective of the number of terms) can be $\epsilon$-approximated by a width $w$ \dnf with at most $(w\log(1/\epsilon))^{O(w)}$ terms. Further, our approximating \dnf s have an additional ``sandwiching'' property which is crucial for applications to derandomization. We believe the sparsification result to be of independent interest and use it to show a weak derandomization of the switching lemma wherein the random restrictions need only have limited independence.

[1]  Luca Trevisan,et al.  A Note on Approximate Counting for k-DNF , 2004, APPROX-RANDOM.

[2]  Russell Impagliazzo,et al.  Reducing the complexity of reductions , 2001, computational complexity.

[3]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[4]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, Comb..

[5]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[6]  Michael Luby,et al.  On deterministic approximation of DNF , 2005, Algorithmica.

[7]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[8]  Noga Alon,et al.  On Sunflowers and Matrix Multiplication , 2012, Computational Complexity Conference.

[9]  Avi Wigderson,et al.  Deterministic Simulation of Probabilistic Constant Depth Circuits (Preliminary Version) , 1985, FOCS 1985.

[10]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[11]  Alexander A. Razborov A Simple Proof of Bazzi’s Theorem , 2009, TOCT.

[12]  Richard M. Karp,et al.  Monte-Carlo Approximation Algorithms for Enumeration Problems , 1989, J. Algorithms.

[13]  Madhur Tulsiani,et al.  Improved Pseudorandom Generators for Depth 2 Circuits , 2010, APPROX-RANDOM.

[14]  I. Benjamini,et al.  On K-wise Independent Distributions and Boolean Functions , 2012, 1201.3261.

[15]  Luca Trevisan,et al.  Better Pseudorandom Generators from Milder Pseudorandom Restrictions , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[16]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[17]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[18]  Mark Braverman Poly-logarithmic Independence Fools AC0 Circuits , 2009, Computational Complexity Conference.

[19]  Kazuyuki Amano,et al.  Tight Bounds on the Average Sensitivity of k-CNF , 2011, Theory Comput..

[20]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[21]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[22]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[23]  Mark Braverman,et al.  Poly-logarithmic Independence Fools AC^0 Circuits , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[24]  Avi Wigderson,et al.  Deterministic approximate counting of depth-2 circuits , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[25]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[26]  Louay Bazzi,et al.  Polylogarithmic Independence Can Fool DNF Formulas , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[27]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[28]  Yishay Mansour,et al.  Learning Boolean Functions via the Fourier Transform , 1994 .

[29]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[30]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[31]  Ryan O'Donnell Open Problems in Analysis of Boolean Functions , 2022 .

[32]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[33]  P. Erdös,et al.  Intersection Theorems for Systems of Sets , 1960 .