Intrinsic localization of anisotropic frames

Abstract The present article studies off-diagonal decay properties of Moore–Penrose pseudoinverses of (bi-infinite) matrices satisfying an analogous condition. Off-diagonal decay in our paper is considered with respect to specific index distance functions which incorporates those usually used for the study of localization properties for wavelet frames but also more general systems such as curvelets or shearlets. Our main result is that if a matrix satisfies an off-diagonal decay condition, then its Moore–Penrose pseudoinverse satisfies a similar condition. Applied to the study of frames this means that, if a wavelet, curvelet or shearlet frame is intrinsically localized, then its canonical dual is, too.

[1]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[2]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[3]  I. Krishtal Wiener’s Lemma and Memory Localization , 2011 .

[4]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[5]  A. Aldroubi,et al.  SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.

[6]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[7]  R. Balan The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators , 2008 .

[8]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[9]  S. H. Kulkarni,et al.  Some properties of unbounded operators with closed range , 2008 .

[10]  P. Lemarié,et al.  Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .

[11]  B. Han Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.

[12]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[13]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.

[14]  Wang-Q Lim,et al.  Shearlets on Bounded Domains , 2010, 1007.3039.

[15]  Karlheinz Gröchenig,et al.  Localization of frames II , 2004 .

[16]  Demetrio Labate,et al.  Representation of Fourier Integral Operators Using Shearlets , 2008 .

[17]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[18]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .

[19]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[20]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[21]  Qiyu Sun Wiener’s Lemma for Infinite Matrices II , 2007, 1001.1457.

[22]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[23]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[24]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[25]  Qiyu Sun,et al.  WIENER’S LEMMA FOR INFINITE MATRICES , 2007 .

[26]  Renjin Jiang,et al.  Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators , 2009, 0906.1880.

[27]  Karlheinz Gröchenig,et al.  Noncommutative Approximation: Inverse-Closed Subalgebras and Off-Diagonal Decay of Matrices , 2009, 0904.0386.

[28]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[29]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[30]  Radu Balan,et al.  A Noncommutative Wiener Lemma and A Faithful Tracial State on Banach Algebras of Time-Frequency Shift Operators , 2005, math/0510178.

[31]  A. G. Baskakov,et al.  Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis , 1997 .

[32]  A. Baskakov,et al.  Memory estimation of inverse operators , 2011, 1103.2748.

[33]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[34]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[35]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[36]  R. Balan,et al.  Density, overcompleteness, and localization of frames , 2006 .

[37]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[38]  O. Norwood Density , 1993, International Society of Hair Restoration Surgery.

[39]  Анатолий Григорьевич Баскаков,et al.  Оценки элементов обратных матриц и спектральный анализ линейных операторов@@@Estimates for the entries of inverse matrices and the spectral analysis of linear operators , 1997 .

[40]  K. Gröchenig Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .

[41]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[42]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[43]  Hart F. Smith A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .

[44]  R. Gribonval,et al.  On a Problem of Gröchenig About Nonlinear Approximation with Localized Frames , 2004 .

[45]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[46]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[47]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[48]  M. Nielsen,et al.  Frame Decomposition of Decomposition Spaces , 2007 .

[49]  Massimo Fornasier,et al.  Intrinsic Localization of Frames , 2005 .

[50]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[51]  Fumiko Futamura Localizable operators and the construction of localized frames , 2009 .