Intrinsic localization of anisotropic frames
暂无分享,去创建一个
[1] D. Donoho. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .
[2] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[3] I. Krishtal. Wiener’s Lemma and Memory Localization , 2011 .
[4] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[5] A. Aldroubi,et al. SLANTED MATRICES, BANACH FRAMES, AND SAMPLING , 2007, 0705.4304.
[6] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[7] R. Balan. The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators , 2008 .
[8] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[9] S. H. Kulkarni,et al. Some properties of unbounded operators with closed range , 2008 .
[10] P. Lemarié,et al. Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .
[11] B. Han. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space , 2009, 0907.3501.
[12] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[13] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.
[14] Wang-Q Lim,et al. Shearlets on Bounded Domains , 2010, 1007.3039.
[15] Karlheinz Gröchenig,et al. Localization of frames II , 2004 .
[16] Demetrio Labate,et al. Representation of Fourier Integral Operators Using Shearlets , 2008 .
[17] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[18] R. Balan,et al. Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .
[19] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[20] G. Kutyniok,et al. Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.
[21] Qiyu Sun. Wiener’s Lemma for Infinite Matrices II , 2007, 1001.1457.
[22] E. Candès,et al. The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.
[23] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[24] Gitta Kutyniok,et al. Parabolic Molecules , 2012, Found. Comput. Math..
[25] Qiyu Sun,et al. WIENER’S LEMMA FOR INFINITE MATRICES , 2007 .
[26] Renjin Jiang,et al. Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators , 2009, 0906.1880.
[27] Karlheinz Gröchenig,et al. Noncommutative Approximation: Inverse-Closed Subalgebras and Off-Diagonal Decay of Matrices , 2009, 0904.0386.
[28] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..
[29] William F. Moss,et al. Decay rates for inverses of band matrices , 1984 .
[30] Radu Balan,et al. A Noncommutative Wiener Lemma and A Faithful Tracial State on Banach Algebras of Time-Frequency Shift Operators , 2005, math/0510178.
[31] A. G. Baskakov,et al. Asymptotic estimates for the entries of the matrices of inverse operators and harmonic analysis , 1997 .
[32] A. Baskakov,et al. Memory estimation of inverse operators , 2011, 1103.2748.
[33] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[34] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[35] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[36] R. Balan,et al. Density, overcompleteness, and localization of frames , 2006 .
[37] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[38] O. Norwood. Density , 1993, International Society of Hair Restoration Surgery.
[39] Анатолий Григорьевич Баскаков,et al. Оценки элементов обратных матриц и спектральный анализ линейных операторов@@@Estimates for the entries of inverse matrices and the spectral analysis of linear operators , 1997 .
[40] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[41] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[42] K. Gröchenig,et al. Wiener's lemma for twisted convolution and Gabor frames , 2003 .
[43] Hart F. Smith. A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .
[44] R. Gribonval,et al. On a Problem of Gröchenig About Nonlinear Approximation with Localized Frames , 2004 .
[45] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[46] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[47] Gabriele Steidl,et al. Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .
[48] M. Nielsen,et al. Frame Decomposition of Decomposition Spaces , 2007 .
[49] Massimo Fornasier,et al. Intrinsic Localization of Frames , 2005 .
[50] Gabriele Steidl,et al. Shearlet coorbit spaces and associated Banach frames , 2009 .
[51] Fumiko Futamura. Localizable operators and the construction of localized frames , 2009 .