A note on the vacant set of random walks on the hypercube and other regular graphs of high degree

We consider a random walk on a $d$-regular graph $G$ where $d\to\infty$ and $G$ satisfies certain conditions. Our prime example is the $d$-dimensional hypercube, which has $n=2^d$ vertices. We explore the likely component structure of the vacant set, i.e. the set of unvisited vertices. Let $\Lambda(t)$ be the subgraph induced by the vacant set of the walk at step $t$. We show that if certain conditions are satisfied then the graph $\Lambda(t)$ undergoes a phase transition at around $t^*=n\log_ed$. Our results are that if $t\leq(1-\epsilon)t^*$ then w.h.p. as the number vertices $n\to\infty$, the size $L_1(t)$ of the largest component satisfies $L_1\gg\log n$ whereas if $t\geq(1+\e)t^*$ then $L_1(t)=o(\log n)$.

[1]  T. Wassmer Phase transition for the vacant set left by random walk on the giant component of a random graph , 2013, 1308.2548.

[2]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[3]  Alan M. Frieze,et al.  The cover time of the giant component of a random graph , 2008, Random Struct. Algorithms.

[4]  Alan M. Frieze,et al.  The cover times of random walks on random uniform hypergraphs , 2013, Theor. Comput. Sci..

[5]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[6]  Itai Benjamini,et al.  Giant component and vacant set for random walk on a discrete torus , 2006, math/0610802.

[7]  David Windisch Logarithmic Components of the Vacant Set for Random Walk on a Discrete Torus , 2008 .

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[9]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[10]  Alan M. Frieze,et al.  Component structure of the vacant set induced by a random walk on a random graph , 2011, SODA '11.

[11]  Alan M. Frieze,et al.  Vacant Sets and Vacant Nets: Component Structures Induced by a Random Walk , 2016, SIAM J. Discret. Math..

[12]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[13]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[14]  Jirí Cerný,et al.  Critical window for the vacant set left by random walk on random regular graphs , 2011, Random Struct. Algorithms.

[15]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[16]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[17]  Augusto Teixeira,et al.  From random walk trajectories to random interlacements , 2013, Ensaios Matemáticos.

[18]  Sergiu Hart,et al.  A note on the edges of the n-cube , 1976, Discret. Math..

[19]  Alan M. Frieze,et al.  The Cover Time of Random Regular Graphs , 2005, SIAM J. Discret. Math..

[20]  Augusto Teixeira,et al.  GIANT VACANT COMPONENT LEFT BY A RANDOM WALK IN A RANDOM d-REGULAR GRAPH , 2010, 1012.5117.

[21]  A. Frieze,et al.  Component structure induced by a random walk on a random graph , 2010 .