An arithmetic for non-size-increasing polynomial-time computation
暂无分享,去创建一个
[1] Martin Hofmann,et al. The strength of non-size increasing computation , 2002, POPL '02.
[2] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[3] Klaus Aehlig,et al. A syntactical analysis of non-size-increasing polynomial time computation , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
[4] M. Hofmann. A Type System for Bounded Space and Functional In-Place Update , 2000, Nord. J. Comput..
[5] Martin Hofmann,et al. Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).
[6] Daniel Leivant,et al. Intrinsic reasoning about functional programs I: first order theories , 2002, Ann. Pure Appl. Log..
[7] Ralph Matthes,et al. Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..
[8] Helmut Schwichtenberg,et al. Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..
[9] J. C. van dePol. Termination of higher-order rewrite systems , 1996 .
[10] Martin Hofmann. Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..
[11] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[12] Neville Dean. First Order Theories , 2003 .
[13] Daniel Leivant,et al. Intrinsic reasoning about functional programs II: unipolar induction and primitive-recursion , 2004, Theor. Comput. Sci..
[14] Martin Hofmann,et al. A New "Feasible" Arithmetic , 2002, J. Symb. Log..
[15] Uday S. Reddy,et al. Global state considered unnecessary: An introduction to object-based semantics , 1996, LISP Symb. Comput..
[16] John C. Reynolds,et al. Syntactic control of interference , 1978, POPL.
[17] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .