An arithmetic for non-size-increasing polynomial-time computation

An arithmetical system is presented with the property that from every proof a realizing term can be extracted that is definable in a certain affine linear typed variant of Godel's T and therefore defines a non-size-increasing polynomial time computable function.

[1]  Martin Hofmann,et al.  The strength of non-size increasing computation , 2002, POPL '02.

[2]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[3]  Klaus Aehlig,et al.  A syntactical analysis of non-size-increasing polynomial time computation , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[4]  M. Hofmann A Type System for Bounded Space and Functional In-Place Update , 2000, Nord. J. Comput..

[5]  Martin Hofmann,et al.  Linear types and non-size-increasing polynomial time computation , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[6]  Daniel Leivant,et al.  Intrinsic reasoning about functional programs I: first order theories , 2002, Ann. Pure Appl. Log..

[7]  Ralph Matthes,et al.  Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..

[8]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[9]  J. C. van dePol Termination of higher-order rewrite systems , 1996 .

[10]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[11]  Ulrich Berger,et al.  Program Extraction from Normalization Proofs , 2006, Stud Logica.

[12]  Neville Dean First Order Theories , 2003 .

[13]  Daniel Leivant,et al.  Intrinsic reasoning about functional programs II: unipolar induction and primitive-recursion , 2004, Theor. Comput. Sci..

[14]  Martin Hofmann,et al.  A New "Feasible" Arithmetic , 2002, J. Symb. Log..

[15]  Uday S. Reddy,et al.  Global state considered unnecessary: An introduction to object-based semantics , 1996, LISP Symb. Comput..

[16]  John C. Reynolds,et al.  Syntactic control of interference , 1978, POPL.

[17]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .