Maximal Elements Under Reference-Dependent Preferences with Applications to Behavioral Traps and Games

We study reference-dependent preference relations defined by a real-valued bivariate function and prove an existence criterion for maximal elements. Then we formulate a generalized version of the well-known Brondsted maximum principle and apply it to behavioral traps and Nash equilibrium in games with preference relations that are not necessarily partial orders.

[1]  Geraldine Fitzpatrick,et al.  Muddling Through , 1997, Cosmopolitan Conservatisms.

[2]  W. Greve,et al.  Traps and gaps in action explanation: theoretical problems of a psychology of human action. , 2001, Psychological review.

[3]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[4]  Vicente Novo,et al.  Characterizing efficiency without linear structure: a unified approach , 2008, J. Glob. Optim..

[5]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[6]  Yan Chen,et al.  When Does Learning in Games Generate Convergence to Nash Equilibria? The Role of Supermodularity in an Experimental Setting ⁄ , 2004 .

[7]  G. Kassay,et al.  Existence of equilibria via Ekeland's principle , 2005 .

[8]  H. Simon,et al.  From substantive to procedural rationality , 1976 .

[9]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[10]  D. Luc On Nash equilibrium. II , 1982 .

[11]  B. Kőszegi Utility from anticipation and personal equilibrium , 2010 .

[12]  A. Brøndsted,et al.  On a lemma of Bishop and Phelps , 1974 .

[13]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[14]  H. Attouch,et al.  Local Search Proximal Algorithms as Decision Dynamics with Costs to Move , 2011 .

[15]  Antoine Soubeyran,et al.  Variable preference relations: Existence of maximal elements , 2013 .

[16]  M. Rabin,et al.  A Model of Reference-Dependent Preferences , 2006 .

[17]  Herbert A. Simon,et al.  Models of Man: Social and Rational. , 1957 .

[18]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[19]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[20]  César Gutiérrez,et al.  A Brézis–Browder principle on partially ordered spaces and related ordering theorems , 2011 .

[21]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Simon,et al.  Reason in Human Affairs. , 1984 .

[23]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[24]  The Revealed Preference Implications of Reference Dependent Preferences , 2007 .

[25]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[26]  D. Bouyssou,et al.  Numerical representations of binary relations with thresholds : A brief survey 1 , 2007 .

[27]  Walter Bossert,et al.  Social Norms and Rationality of Choice , 2007 .

[28]  C. Lindblom THE SCIENCE OF MUDDLING THROUGH , 1959 .