Online-Infrarotspektroskopie in der Bioprozessanalytik

In der Bioverfahrenstechnik ist es von entscheidender Bedeutung, Zustandsgrosen zeitnah zum tatsachlichen Prozess zu beobachten. Eine solche in situ-Analyse ermoglicht eine akkurate Prozesssteuerung und tragt somit zur Erhohung der Produktivitat sowie der Reproduzierbarkeit bei. Ebenso lassen sich durch eine optimierte Steuerung Verbrauchskosten senken. Molekulschwingungen vieler organischer Verbindungen zeigen spektrale Signaturen im IR-Bereich. Aufgrund dessen bieten sich fur eine Prozessuberwachung verschiedene Infrarotsensoren an. Durch die Verwendung dieser nicht-invasiven, optischen Sensoren ist gewahrleistet, dass die Messungen keinen Einfluss auf den Kultivierungsvorgang haben. Das Kultivierungsmedium wird weder durch Probenentnahme verbraucht, noch beeinflusst. Es konnen unterschiedlichste chemische Komponenten des Kultivierungsmediums erfasst werden. Dazu gehoren Nahrstoffe, Wachstumsfaktoren und verschiedene Metabolite sowie die Biomasse selbst. Dieser Ubersichtsartikel bietet einen Einblick in die verschiedenen Anwendungen der Infrarotspektroskopie im Bereich der Bioprozesstechnik. Es werden die verschiedenen Techniken dieser Methode aufgefuhrt sowie eine Uberblick uber aktuelle Arbeiten gegeben.

[1]  Attenuated Total Reflection-Fourier transform infrared analysis of the fermentation process of pineapple , 2005 .

[2]  K. Kiviharju,et al.  On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes , 2007, Journal of Industrial Microbiology & Biotechnology.

[3]  Joaquim P Cardoso,et al.  The use of NIR as a multi-parametric in situ monitoring technique in filamentous fermentation systems. , 2008, Talanta.

[4]  Mark A Arnold,et al.  On‐line monitoring of human prostate cancer cells in a perfusion rotating wall vessel by near‐infrared spectroscopy , 2004, Biotechnology and bioengineering.

[5]  Linda M. Harvey,et al.  Simultaneous and rapid monitoring of biomass and biopolymer production by Sphingomonas paucimobilis using Fourier transform-near infrared spectroscopy , 2003, Biotechnology Letters.

[6]  S. Arnold,et al.  Use of at‐line and in‐situ near‐infrared spectroscopy to monitor biomass in an industrial fed‐batch Escherichia coli process , 2002, Biotechnology and bioengineering.

[7]  Urs von Stockar,et al.  Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. , 2004, Journal of biotechnology.

[8]  A. D. de Graaf,et al.  Dynamic in vivo 31P nuclear magnetic resonance study of Saccharomyces cerevisiae in glucose‐limited chemostat culture during the aerobic–anaerobic shift , 2000, Yeast.

[9]  K. Schügerl,et al.  Characterization of bioreactors by in-situ fluorometry , 1986 .

[10]  R. Poppi,et al.  Direct determination of ephedrine intermediate in a biotransformation reaction using infrared spectroscopy and PLS. , 2008, Talanta.

[11]  Mark R. Riley,et al.  Simultaneous measurement of glucose and glutamine in insect cell culture media by near infrared spectroscopy. , 1997 .

[12]  Diego Matteuzzi,et al.  Assessment of In‐Line Near‐Infrared Spectroscopy for Continuous Monitoring of Fermentation Processes , 2003, Biotechnology progress.

[13]  Brian McNeil,et al.  Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. , 2007, Analytica chimica acta.

[14]  Urs von Stockar,et al.  Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. , 2002, Biotechnology and bioengineering.

[15]  Brian McNeil,et al.  Influence of morphology on the near-infrared spectra of mycelial biomass and its implications in bioprocess monitoring. , 2003, Biotechnology and bioengineering.

[16]  K Sato,et al.  On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. , 2000, Journal of bioscience and bioengineering.

[17]  Linda M. Harvey,et al.  Monitoring a high cell density recombinant Pichia pastoris fed-batch bioprocess using transmission and reflectance near infrared spectroscopy , 2005 .

[18]  Linda M. Harvey,et al.  At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy , 2006 .

[19]  Li Hongqiang,et al.  Near-infrared spectroscopy with a fiber-optic probe for state variables determination in solid-state fermentation , 2008 .

[20]  K. Esbensen,et al.  On‐line near infrared monitoring of glycerol‐boosted anaerobic digestion processes: Evaluation of process analytical technologies , 2008, Biotechnology and bioengineering.

[21]  David Littlejohn,et al.  In situ monitoring of the seed stage of a fermentation process using non-invasive NIR spectrometry. , 2008, The Analyst.

[22]  F. Malcata,et al.  On‐Line Determination of Biomass in a Microalga Bioreactor Using a Novel Computerized Flow Injection Analysis System , 2002, Biotechnology progress.

[23]  Brian McNeil,et al.  In‐situ near infrared spectroscopy to monitor key analytes in mammalian cell cultivation , 2003, Biotechnology and bioengineering.

[24]  Z. Ge,et al.  Noninvasive Spectroscopy for Monitoring Cell Density in a Fermentation Process , 1994 .

[25]  Urs von Stockar,et al.  The influence of correlated calibration samples on the prediction performance of multivariate models based on mid-infrared spectra of animal cell cultures. , 2002, Analytical chemistry.

[26]  Urs von Stockar,et al.  pH prediction and control in bioprocesses using mid‐infrared spectroscopy , 2008, Biotechnology and bioengineering.

[27]  Takashi Mikami,et al.  Estimation of the concentrations of cells, astaxanthin and glucose in a culture of Phaffia rhodozyma by near infrared reflectance spectroscopy , 1996 .

[28]  H. Goicoechea,et al.  Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection. , 2006, Talanta.

[29]  S. Sivakesava,et al.  Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques , 2001 .

[30]  Urs von Stockar,et al.  A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. , 2007, Journal of biotechnology.

[31]  B. Lendl,et al.  On-Line Fermentation Monitoring by Mid-Infrared Spectroscopy , 2004, Applied spectroscopy.

[32]  Martin Rhiel,et al.  Nondestructive near‐infrared spectroscopic measurement of multiple analytes in undiluted samples of serum‐based cell culture media , 2002, Biotechnology and bioengineering.

[33]  Gerrit van Straten,et al.  Assessment of near infrared and “software sensor” for biomass monitoring and control , 2008 .

[34]  Carl-Fredrik Mandenius,et al.  On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation. , 2005, Journal of biotechnology.

[35]  B Tartakovsky,et al.  Evaluation of Multiwavelength Culture Fluorescence for Monitoring the Aroma Compound 4‐Hydroxy‐2(or 5)‐ethyl‐5(or 2)‐methyl‐3(2H)‐furanone (HEMF) Production , 2008, Biotechnology progress.

[36]  Urs von Stockar,et al.  Methodology for real-time, multianalyte monitoring of fermentations using an in-situ mid-infrared sensor. , 2003, Biotechnology and bioengineering.

[37]  Brian McNeil,et al.  Simultaneous determination of glycerol and clavulanic acid in an antibiotic bioprocess using attenuated total reflectance mid infrared spectroscopy. , 2007, Analytica chimica acta.

[38]  D. W. Ribbons,et al.  In situ proton-NMR analyses of Escherichia coli HB101 fermentations in 1H2O and in D2O. , 1999, Microbiology.

[39]  Ana P Ferreira,et al.  Monitoring a Complex Medium Fermentation with Sample‐Sample Two‐Dimensional FT‐NIR Correlation Spectroscopy , 2006, Biotechnology progress.