Bayesian focalization: quantifying source localization with environmental uncertainty.

This paper applies a Bayesian formulation to study ocean acoustic source localization as a function of uncertainty in environmental properties (water column and seabed) and of data information content [signal-to-noise ratio (SNR) and number of frequencies]. The approach follows that of the optimum uncertain field processor [A. M. Richardson and L. W. Nolte, J. Acoust. Soc. Am. 89, 2280-2284 (1991)], in that localization uncertainty is quantified by joint marginal probability distributions for source range and depth integrated over uncertain environmental properties. The integration is carried out here using Metropolis Gibbs' sampling for environmental parameters and heat-bath Gibbs' sampling for source location to provide efficient sampling over complicated parameter spaces. The approach is applied to acoustic data from a shallow-water site in the Mediterranean Sea where previous geoacoustic studies have been carried out. It is found that reliable localization requires a sufficient combination of prior (environmental) information and data information. For example, sources can be localized reliably for single-frequency data at low SNR (-3 dB) only with small environmental uncertainties, whereas successful localization with large environmental uncertainties requires higher SNR and/or multifrequency data.

[1]  Loren W. Nolte,et al.  Wideband optimal a posteriori probability source localization in an uncertain shallow ocean environment , 1998 .

[2]  Stan E. Dosso,et al.  Environmental uncertainty in ocean acoustic source localization , 2003 .

[3]  P. Gerstoft,et al.  Ocean acoustic inversion with estimation of a posteriori probability distributions , 1998 .

[4]  Peter Gerstoft,et al.  Inversion of acoustic data using a combination of genetic algorithms and the Gauss–Newton approach , 1995 .

[5]  Peter Gerstoft,et al.  Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions , 1994 .

[6]  S. Dosso,et al.  Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data. , 2002, The Journal of the Acoustical Society of America.

[7]  Henrik Schmidt,et al.  Nonlinear inversion for ocean‐bottom properties , 1992 .

[8]  Stan E. Dosso,et al.  An adaptive-hybrid algorithm for geoacoustic inversion , 2001 .

[9]  Loren W. Nolte,et al.  A posteriori probability source localization in an uncertain sound speed, deep ocean environment , 1991 .

[10]  N. R. Chapman,et al.  Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water , 1998 .

[11]  Stan E Dosso,et al.  Data error covariance in matched-field geoacoustic inversion. , 2006, The Journal of the Acoustical Society of America.

[12]  A. Tolstoy,et al.  Sensitivity of matched field processing to sound‐speed profile mismatch for vertical arrays in a deep water Pacific environment , 1988 .

[13]  Michael D. Collins,et al.  Efficient navigation of parameter landscapes , 1994 .

[14]  Peter L. Nielsen,et al.  Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations , 2001 .

[15]  M Siderius,et al.  An evaluation of the accuracy of shallow water matched field inversion results. , 2001, The Journal of the Acoustical Society of America.

[16]  Stan E. Dosso,et al.  Estimation of ocean-bottom properties by matched-field inversion of acoustic field data , 1993 .

[17]  Stacy L. Tantum,et al.  Tracking and localizing a moving source in an uncertain shallow water environment , 1998 .

[18]  Loren W. Nolte,et al.  COMPUTATIONALLY EFFICIENT MONTE CARLO ESTIMATION ALGORITHMS FOR MATCHED FIELD PROCESSING IN UNCERTAIN OCEAN ENVIRONMENTS , 1994 .

[19]  S. Dosso Quantifying uncertainty in geoacoustic inversion. I. A fast Gibbs sampler approach. , 2002, The Journal of the Acoustical Society of America.

[20]  Arthur B. Baggeroer,et al.  An overview of matched field methods in ocean acoustics , 1993 .

[21]  John M. Ozard,et al.  Matched field processing in shallow water for range, depth, and bearing determination: Results of experiment and simulation , 1989 .

[22]  W A Kuperman,et al.  Focalization: environmental focusing and source localization. , 1991, The Journal of the Acoustical Society of America.

[23]  Evan K. Westwood,et al.  A normal mode model for acousto‐elastic ocean environments , 1996 .