Model reference adaptive control of bilinear systems using Volterra series expansions

A model reference adaptive control scheme of bilinear systems which requires only output measurement is presented. Local stability of the adaptive system is proved. It is not assumed that the system is uniformly observable for any input, nor the zero dynamics of the system is globally asymptotically stable. To design the controller, a parametric input-output representation of the system is developed using the Volterra series expansion. An adaptive observer, based on the representation, is also proposed.

[1]  A. Isidori Nonlinear Control Systems , 1985 .

[2]  Darrell Williamson,et al.  Observation of bilinear systems with application to biological control , 1977, Autom..

[3]  Triangular canonical forms for bilinear systems , 1978 .

[4]  Bor-Sen Chen,et al.  H∞ Control Design in Bilinear Systems: A Tensor Formal Series Approach , 1993 .

[5]  Jean-Paul Gauthier,et al.  A separation principle for bilinear systems with dissipative drift , 1992 .

[6]  Per-Olof Gutman Stabilizing controllers for bilinear systems , 1981 .

[7]  O. Grasselli,et al.  An existence theorem for observers of bilinear systems , 1981 .

[8]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[9]  I. Kanellakopoulos,et al.  Nonlinear design of adaptive controllers for linear systems , 1994, IEEE Trans. Autom. Control..

[10]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[11]  R. Marino Adaptive observers for single output nonlinear systems , 1990 .

[12]  Roger W. Brockett Volterra series and geometric control theory , 1976, Autom..

[13]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[14]  H. Tuan,et al.  On Robust Stabilization and H∞ Control for Linear and Bilinear Systems with Nonlinear Uncertainty , 1995 .

[15]  C. Bruni,et al.  Bilinear systems: An appealing class of "nearly linear" systems in theory and applications , 1974 .

[16]  R. Marino,et al.  Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization , 1993, IEEE Trans. Autom. Control..

[17]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[18]  L. Praly,et al.  Adaptive nonlinear regulation: estimation from the Lyapunov equation , 1992 .

[19]  S. Hara,et al.  Minimal order state observers for bilinear systems , 1976 .

[20]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[21]  I. Kanellakopoulos,et al.  Adaptive output-feedback control of systems with output nonlinearities , 1992 .

[22]  A. Annaswamy,et al.  Adaptive control of nonlinear systems with a triangular structure , 1994, IEEE Trans. Autom. Control..

[23]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[24]  Riccardo Marino,et al.  Observer-based adaptive stabilization for a class of non-linear systems , 1992, Autom..

[25]  Bor-Sen Chen,et al.  H H ∞ design in bilinear systems: a tensor formal series approach , 1994 .