Fighting cybercrime: a review and the Taiwan experience

Cybercrime is becoming ever more serious. Findings from the 2002 Computer Crime and Security Survey show an upward trend that demonstrates a need for a timely review of existing approaches to fighting this new phenomenon in the information age. In this paper, we define different types of cybercrime and review previous research and current status of fighting cybercrime in different countries that rely on legal, organizational, and technological approaches. We focus on a case study of fighting cybercrime in Taiwan and discuss problems faced. Finally, we propose several recommendations to advance the work of fighting eybercrime.

[1]  Hsinchun Chen,et al.  COPLINK: managing law enforcement data and knowledge , 2003, CACM.

[2]  Stephanie Forrest,et al.  A sense of self for Unix processes , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[3]  Ellen Spertus,et al.  Smokey: Automatic Recognition of Hostile Messages , 1997, AAAI/IAAI.

[4]  Rik Farrow,et al.  Tangled Web: Tales of Digital Crime from the Shadows of Cyberspace , 2000 .

[5]  Robert Haas,et al.  WANTED: a theft-deterrent solution for the pervasive computing world , 2000, Proceedings Ninth International Conference on Computer Communications and Networks (Cat.No.00EX440).

[6]  Steven Philippsohn Trends In Cybercrime An Overview Of Current Financial Crimes On The Internet , 2001, Comput. Secur..

[7]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[8]  James R. Richards Transnational Criminal Organizations, Cybercrime, and Money Laundering: A Handbook for Law Enforcement Officers, Auditors, and Financial Investigators , 1998 .

[9]  Salvatore J. Stolfo,et al.  Data Mining Approaches for Intrusion Detection , 1998, USENIX Security Symposium.

[10]  Jo-Ann M. Adams,et al.  Controlling Cyberspace: Applying the Computer Fraud and Abuse Act to the Internet , 1996 .

[11]  Stan Matwin,et al.  Proceedings of the 11th European conference on Principles and Practice of Knowledge Discovery in Databases , 2007 .

[12]  Donn B. Parker,et al.  Fighting computer crime - a new framework for protecting information , 1998 .

[13]  B. Loader,et al.  Cybercrime : law enforcement, security and surveillance in the information age , 2000 .

[14]  George M. Mohay,et al.  Mining e-mail content for author identification forensics , 2001, SGMD.

[15]  Georgios Paliouras,et al.  Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach , 2000, ArXiv.

[16]  H SpaffordEugene The internet worm program: an analysis , 1989 .

[17]  Salvatore J. Stolfo,et al.  Distributed data mining in credit card fraud detection , 1999, IEEE Intell. Syst..

[18]  Ted E. Senator,et al.  The FinCEN Artificial Intelligence System: Identifying Potential Money Laundering from Reports of Large Cash Transactions , 1995, IAAI.

[19]  Eugene H. Spafford,et al.  The internet worm program: an analysis , 1989, CCRV.

[20]  Salvatore J. Stolfo,et al.  Data mining methods for detection of new malicious executables , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[21]  Stephen G. MacDonell,et al.  Software Forensics: Extending Authorship Analysis Techniques to Computer Programs , 2002 .

[22]  E. Eugene Schultz,et al.  Beyond preliminary analysis of the WANK and OILZ worms: a case study of malicious code , 1993, Comput. Secur..

[23]  Martin P. Loeb,et al.  CSI/FBI Computer Crime and Security Survey , 2004 .

[24]  Hugo T. Jankowitz Detecting Plagiarism in Student Pascal Programs , 1988, Comput. J..