Evaluating modular forms on Shimura curves

Let f be a newform, as specified by its Hecke eigenvalues, on a Shimura curve X. We describe a method for evaluating f. The most interesting case is when X arises as a compact quotient of the hyperbolic plane, so that classical q-expansions are not available. The method takes the form of an explicit, rapidly-convergent formula that is well-suited for numerical computation. We apply it to the problem of computing modular parametrizations of elliptic curves, and illustrate with some numerical examples.

[1]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[2]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[3]  Noam D. Elkies,et al.  Shimura Curve Computations , 1998, ANTS.

[4]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[5]  R. Holowinsky Sieving for mass equidistribution , 2008, 0809.1640.

[6]  Lassina Dembélé,et al.  Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms , 2006, Math. Comput..

[7]  A. Pizer,et al.  An algorithm for computing modular forms on Γ0(N) , 1980 .

[8]  Shouwu Zhang Heights of Heegner points on Shimura curves , 2001 .

[9]  John Voight Computing CM Points on Shimura Curves Arising from Cocompact Arithmetic Triangle Groups , 2006, ANTS.

[10]  S. Kudla,et al.  The central critical value of the triple product $L$-function , 1991 .

[11]  Mathematische,et al.  Heegner Points and Derivatives of L-Series. II , 2005 .

[12]  John Voight Computing Automorphic Forms on Shimura Curves over Fields with Arbitrary Class Number , 2010, ANTS.

[13]  M. Vignéras Arithmétique des Algèbres de Quaternions , 1980 .

[14]  H. Darmon,et al.  Algebraic cycles and Stark-Heegner points , 2011 .

[15]  Dorian Goldfeld,et al.  Gauss’ class number problem for imaginary quadratic fields , 1985 .

[16]  Hideo Shimizu Theta series and automorphic forms on GL2 , 1972 .

[17]  J. Voight Computing fundamental domains for Fuchsian groups , 2008, 0802.0196.

[18]  Noam D. Elkies,et al.  Heegner point computations , 1994, ANTS.

[19]  H. Iwaniec Spectral methods of automorphic forms , 2002 .

[20]  D. Kohel,et al.  Fundamental domains for Shimura curves , 2003 .

[21]  K. Lauter,et al.  Explicit Heegner Points: Kolyvagin's Conjecture and Non-trivial Elements in the Shafarevich-Tate Group , 2007, 0707.0032.

[22]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[23]  H. Carayol Sur la mauvaise réduction des courbes de Shimura , 1986 .

[24]  Hideo Shimizu On Zeta Functions of Quaternion Algebras , 1965 .

[25]  J. Voight,et al.  Computing Power Series Expansions of Modular Forms , 2012, 1205.0045.

[26]  Henri Darmon,et al.  Efficient calculation of Stark-Heegner points via overconvergent modular symbols , 2006 .

[27]  B. Gross L-functions and Arithmetic: Kolyvagin's work for modular elliptic curves , 1991 .

[28]  A. Atkin,et al.  Hecke operators on Γ0(m) , 1970 .

[29]  Thomas C. Watson Rankin Triple Products and Quantum Chaos , 2008, 0810.0425.

[30]  William Stein,et al.  Modular forms, a computational approach , 2007 .

[31]  Lassina Dembélé,et al.  Computing Hilbert Modular Forms over Fields with Nontrivial Class Group , 2007, ANTS.

[32]  Matthew Greenberg Heegner points and rigid analytic modular forms , 2006 .

[33]  Andrew R. Booker,et al.  Effective computation of Maass cusp forms , 2006 .

[34]  Paul E. Gunnells,et al.  Hecke Operators and Hilbert Modular Forms , 2008, ANTS.

[35]  Matthew Greenberg Heegner Point Computations Via Numerical p-Adic Integration , 2006, ANTS.

[36]  Paul D. Nelson,et al.  Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels , 2012, 1205.5534.

[37]  Matthew Greenberg,et al.  Computing systems of Hecke eigenvalues associated to Hilbert modular forms , 2009, Math. Comput..