Liquid flows in microchannels

[1]  S. Hsieh,et al.  Liquid flow in a micro-channel , 2006 .

[2]  R. Bharadwaj,et al.  Dynamics of field-amplified sample stacking , 2005, Journal of Fluid Mechanics.

[3]  J. Santiago,et al.  Instability of electrokinetic microchannel flows with conductivity gradients , 2004 .

[4]  J. Santiago,et al.  A review of micropumps , 2004 .

[5]  Shanshan Zhu,et al.  Flow characteristics of liquids in microtubes driven by a high pressure , 2004 .

[6]  C. Meinhart,et al.  A generating mechanism for apparent fluid slip in hydrophobic microchannels , 2004 .

[7]  D. J. Phares,et al.  A study of laminar flow of polar liquids through circular microtubes , 2004 .

[8]  Gwo-Bin Lee,et al.  Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection , 2004 .

[9]  M. Donahue,et al.  Integrated microfluidic isolation platform for magnetic particle manipulation in biological systems , 2004 .

[10]  R. Adrian,et al.  Transition from laminar to turbulent flow in liquid filled microtubes , 2004 .

[11]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[12]  Yan Li,et al.  Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network , 2004 .

[13]  Gian Luca Morini,et al.  LAMINAR-TO-TURBULENT FLOW TRANSITION IN MICROCHANNELS , 2004 .

[14]  J. Santiago,et al.  Porous glass electroosmotic pumps: design and experiments. , 2003, Journal of colloid and interface science.

[15]  J. Santiago,et al.  Porous glass electroosmotic pumps: theory. , 2003, Journal of colloid and interface science.

[16]  Akihiro Arai,et al.  Electrokinetic supercharging preconcentration and microchip gel electrophoretic separation of sodium dodecyl sulfate‐protein complexes , 2003, Electrophoresis.

[17]  Rajiv Bharadwaj,et al.  Thousandfold signal increase using field‐amplified sample stacking for on‐chip electrophoresis , 2003, Electrophoresis.

[18]  Juan G. Santiago,et al.  Incomplete sensitivities for the design of minimal dispersion fluidic channels , 2003 .

[19]  K. Breuer,et al.  APPARENT SLIP FLOWS IN HYDROPHILIC AND HYDROPHOBIC MICROCHANNELS , 2003 .

[20]  A. Singh,et al.  Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. , 2003, Analytical chemistry.

[21]  R. Allen,et al.  Prediction of electrokinetic and pressure flow in a microchannel T-junction , 2003 .

[22]  A. Barron,et al.  Tandem isotachophoresis-zone electrophoresis via base-mediated destacking for increased detection sensitivity in microfluidic systems. , 2003, Analytical chemistry.

[23]  J. Koo,et al.  Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects , 2003 .

[24]  Chang-Jin Kim,et al.  Particle separation and concentration control for digital microfluidic systems , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[25]  S. Wereley,et al.  Particle imaging techniques for microfabricated fluidic systems , 2003 .

[26]  Ring-Ling Chien,et al.  Sample stacking revisited: A personal perspective , 2003, Electrophoresis.

[27]  Amy E Herr,et al.  On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations. , 2003, Analytical chemistry.

[28]  Lounes Tadrist,et al.  Experimental friction factor of a liquid flow in microtubes , 2003 .

[29]  Gwo-Bin Lee,et al.  Micro flow cytometers with buried SU-8/SOG optical waveguides , 2003 .

[30]  Zhi-Xin Li,et al.  EXPERIMENTAL STUDY ON FLOW CHARACTERISTICS OF LIQUID IN CIRCULAR MICROTUBES , 2003 .

[31]  Qifeng Xue,et al.  Sample pre-concentration by isotachophoresis in microfluidic devices. , 2002, Journal of chromatography. A.

[32]  William J. Benett,et al.  Polymer-Based Packaging Platform for Hybrid Microfluidic Systems , 2002 .

[33]  Quan Liao,et al.  Thermal effects on electro-osmotic pumping of liquids in microchannels , 2002 .

[34]  Zhifang Fan,et al.  Miniaturized capillary isoelectric focusing in plastic microfluidic devices , 2002, Electrophoresis.

[35]  B. W. Webb,et al.  Characterization of frictional pressure drop for liquid flows through microchannels , 2002 .

[36]  K. Takehara,et al.  Particle tracking techniques for electrokinetic microchannel flows. , 2002, Analytical chemistry.

[37]  S. Garimella,et al.  Investigation of Liquid Flow in Microchannels , 2002 .

[38]  S. Ghosal Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge , 2002, Journal of Fluid Mechanics.

[39]  L. Locascio,et al.  Microfluidic temperature gradient focusing. , 2002, Analytical chemistry.

[40]  C. Meinhart,et al.  Apparent fluid slip at hydrophobic microchannel walls , 2002 .

[41]  James C Baygents,et al.  Electrically-driven fluid motion in channels with streamwise gradients of the electrical conductivity , 2001 .

[42]  S. Garimella,et al.  A COMPARATIVE ANALYSIS OF STUDIES ON HEAT TRANSFER AND FLUID FLOW IN MICROCHANNELS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[43]  R. Austin,et al.  Design of a microfabricated magnetic cell separator , 2001, Electrophoresis.

[44]  Gwo-Bin Lee,et al.  Hydrodynamic Focusing for a Micromachined Flow Cytometer , 2001 .

[45]  S. Granick,et al.  Viscosity of interfacial water. , 2001, Physical review letters.

[46]  Liqing Ren,et al.  Interfacial electrokinetic effects on liquid flow in microchannels , 2001 .

[47]  R. Chien,et al.  Sample stacking in laboratory-on-a-chip devices. , 2001, Journal of chromatography. A.

[48]  J. Santiago Electroosmotic flows in microchannels with finite inertial and pressure forces. , 2001, Analytical chemistry.

[49]  P Yager,et al.  Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF. , 2001, Analytical chemistry.

[50]  S. K. Griffiths,et al.  Low-dispersion turns and junctions for microchannel systems. , 2001, Analytical chemistry.

[51]  N F de Rooij,et al.  Sample preconcentration by field amplification stacking for microchip‐based capillary electrophoresis , 2001, Electrophoresis.

[52]  G. Bruin,et al.  Recent developments in electrokinetically driven analysis on microfabricated devices , 2000, Electrophoresis.

[53]  Prashanta Dutta,et al.  Electroosmotic Flow Control in Complex Microgeometries , 2000, Micro-Electro-Mechanical Systems (MEMS).

[54]  C. Lunte,et al.  On‐line preconcentration methods for capillary electrophoresis , 2000, Electrophoresis.

[55]  J. Beckers,et al.  Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations , 2000, Electrophoresis.

[56]  S. Jacobson,et al.  Computer simulations of electrokinetic injection techniques in microfluidic devices , 2000, Analytical chemistry.

[57]  N. Obot TOWARD A BETTER UNDERSTANDING OF FRICTION AND HEAT/MASS TRANSFER IN MICROCHANNELS-- A LITERATURE REVIEW , 2000, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[58]  Robin H. Liu,et al.  Passive mixing in a three-dimensional serpentine microchannel , 2000, Journal of Microelectromechanical Systems.

[59]  J. Santiago,et al.  Fabrication and characterization of electrokinetic micro pumps , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[60]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  H. Girault,et al.  Finite element simulation of an electroosmotic-driven flow division at a T-junction of microscale dimensions , 2000, Analytical chemistry.

[62]  P. Arce,et al.  Role of Joule heating in dispersive mixing effects in electrophoretic cells: Convective‐diffusive transport aspects , 2000, Electrophoresis.

[63]  G. Mala,et al.  Pressure-driven water flows in trapezoidal silicon microchannels , 2000 .

[64]  T. Kenny,et al.  Electroosmotic capillary flow with nonuniform zeta potential , 2000, Analytical Chemistry.

[65]  H. Morgan,et al.  Electric field induced fluid flow on microelectrodes : the effect of illumination , 2000 .

[66]  Dongqing Li,et al.  Liquid transport in rectangular microchannels by electroosmotic pumping , 2000 .

[67]  C. Ivory A Brief Review of Alternative Electrofocusing Techniques , 2000 .

[68]  S. Tsangaris,et al.  Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries , 1999 .

[69]  S. Wereley,et al.  PIV measurements of a microchannel flow , 1999 .

[70]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[71]  Ian Papautsky,et al.  Effects of rectangular microchannel aspect ratio on laminar friction constant , 1999, MOEMS-MEMS.

[72]  S. Terabe,et al.  Sample stacking of fast-moving anions in capillary zone electrophoresis with pH-suppressed electroosmotic flow. , 1999, Journal of chromatography. A.

[73]  K. Breuer,et al.  MEMS, microengineering and aerospace systems , 1999 .

[74]  S. K. Griffiths,et al.  Conditions for similitude between the fluid velocity and electric field in electroosmotic flow , 1999, Analytical chemistry.

[75]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[76]  D. Hitt,et al.  Confocal imaging of flows in artificial venular bifurcations. , 1999, Journal of biomechanical engineering.

[77]  Ian Papautsky,et al.  Laminar fluid behavior in microchannels using micropolar fluid theory , 1999 .

[78]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[79]  O Hofmann,et al.  Adaptation of capillary isoelectric focusing to microchannels on a glass chip. , 1999, Analytical chemistry.

[80]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[81]  J. Welty,et al.  Pressure Drop Measurements in a Microchannel , 1998, Micro-Electro-Mechanical Systems (MEMS).

[82]  Paul C. Galambos,et al.  Micro-Fluidic Diffusion Coefficient Measurement , 1998 .

[83]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[84]  K. R. Williams,et al.  Novel interconnection technologies for integrated microfluidic systems , 1998 .

[85]  R. S. Dhariwal,et al.  Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in 〈100〉 Silicon , 1998 .

[86]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[87]  Howard H. Hu,et al.  Numerical simulation of electroosmotic flow. , 1998, Analytical chemistry.

[88]  U. Larsen,et al.  Modular concept of a laboratory on a chip for chemical and biochemical analysis , 1998 .

[89]  J. Izatt,et al.  High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. , 1997, Optics express.

[90]  K. Breuer,et al.  Gaseous slip flow in long microchannels , 1997 .

[91]  P. Yager,et al.  Biotechnology at low Reynolds numbers. , 1996, Biophysical journal.

[92]  Dongqing Li,et al.  Heat Transfer and Fluid Flow in Microchannels , 1996, Microelectromechanical Systems (MEMS).

[93]  Jens Anders Branebjerg,et al.  Fast mixing by lamination , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[94]  A. K. Tieu,et al.  Measurements in microscopic flow with a solid-state LDA , 1995 .

[95]  P. Callaghan,et al.  NMR Imaging of the Time Evolution of Electroosmotic Flow in a Capillary , 1995 .

[96]  Xiaoning Jiang,et al.  Micro-fluid Flow In Microchannel , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[97]  T. Mullin,et al.  Transition to turbulence in constant-mass-flux pipe flow , 1995, Journal of Fluid Mechanics.

[98]  Jay N. Zemel,et al.  Gas flow in micro-channels , 1995, Journal of Fluid Mechanics.

[99]  D. J. Harrison,et al.  Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems , 1994 .

[100]  J. Michael Ramsey,et al.  Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip , 1994 .

[101]  X. Peng,et al.  FRICTIONAL FLOW CHARACTERISTICS OF WATER FLOWING THROUGH RECTANGULAR MICROCHANNELS , 1994 .

[102]  Cheng S. Lee,et al.  Mechanistic studies of electroosmotic control at the capillary-solution interface , 1993 .

[103]  E. Yeung,et al.  Imaging of hydrodynamic and electrokinetic flow profiles in capillaries , 1993 .

[104]  Peter J. Scales,et al.  Electrokinetics of the silica-solution interface: a flat plate streaming potential study , 1992 .

[105]  D. Burgi,et al.  Optimization in sample stacking for high-performance capillary electrophoresis , 1991 .

[106]  Jay N. Zemel,et al.  Liquid Transport In Micron And Submicron Channels , 1989, Optics & Photonics.

[107]  Eli Grushka,et al.  Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations , 1989 .

[108]  J. Knox Thermal effects and band spreading in capillary electro-separation , 1988 .

[109]  B. Karger,et al.  High Performance Capillary Electrophoresis , 1988, Nature.

[110]  Jacob N. Israelachvili,et al.  Measurement of the viscosity of liquids in very thin films , 1986 .

[111]  John L. Anderson,et al.  ELECTROOSMOSIS THROUGH PORES WITH NONUNIFORMLY CHARGED WALLS , 1985 .

[112]  W. Little,et al.  Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators , 1983 .

[113]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[114]  F. Everaerts,et al.  High-performance zone electrophoresis , 1979 .

[115]  Charles L. Merkle,et al.  An Analytical Study of the Effects of Surface Roughness on Boundary-Layer Transition , 1974 .

[116]  R. Eckert,et al.  Rheological Properties of Viscoelastic Fluids from Continuous Flow Through a Channel Approximating Infinite Parallel Plates , 1974 .

[117]  R. W. Hanks,et al.  Laminar-Turbulent Transition in Ducts of Rectangular Cross Section , 1966 .

[118]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[119]  D. Burgreen,et al.  Electrokinetic Flow in Ultrafine Capillary Slits1 , 1964 .

[120]  Carl D. Meinhart,et al.  Experimental analysis of particle and fluid motion in ac electrokinetics , 2005 .

[121]  Jesper Glückstad,et al.  Sorting particles with light , 2004, Nature materials.

[122]  D. Maynes,et al.  Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry , 2002 .

[123]  Thomas W. Kenny,et al.  Designing Corner Compensation for Electrophoresis in Compact Geometries , 2000 .

[124]  T. Duke,et al.  Sorting biomolecules with microdevices , 2000, Electrophoresis.

[125]  J. Alarie,et al.  Effects of the electric field distribution on microchip valving performance , 2000, Electrophoresis.

[126]  Chih-Ming Ho,et al.  MICRO-ELECTRO-MECHANICAL-SYSTEMS (MEMS) AND FLUID FLOWS , 1998 .

[127]  Phillip H. Paul,et al.  Electrokinetic Generation of High Pressures using Porous Microstructures , 1998 .

[128]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[129]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[130]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[131]  Jens Anders Branebjerg,et al.  Application of Miniature Analyzers: from Microfluidic Components to µTAS , 1995 .

[132]  A. Berg,et al.  Micro Total Analysis Systems , 1995 .

[133]  L J Kricka,et al.  Manipulation and flow of biological fluids in straight channels micromachined in silicon. , 1994, Clinical chemistry.

[134]  A. Ewing,et al.  Effects of buffer pH on electroosmotic flow control by an applied radial voltage for capillary zone electrophoresis. , 1993, Analytical chemistry.

[135]  R. J. Hunter,et al.  Zeta Potential in Colloid Science , 1981 .

[136]  R. Shah Laminar Flow Forced convection in ducts , 1978 .

[137]  P. C. Hiemenz,et al.  Principles of colloid and surface chemistry , 1977 .

[138]  A. Adamson Physical chemistry of surfaces , 1960 .

[139]  D. C. Henry The electrophoresis of suspended particles. IV. The surface conductivity effect , 1948 .

[140]  P. W. Bridgman The Thermal Conductivity of Liquids under Pressure , 1923 .

[141]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.