Active mobile robot localization by entropy minimization

Localization is the problem of determining the position of a mobile robot from sensor data. Most existing localization approaches are passive, i.e., they do not exploit the opportunity to control the robot's effecters during localization. This paper proposes an active localization approach. The approach provides rational criteria for (1) setting the robot's motion direction (exploration), and (2) determining the pointing direction of the sensors so as to most efficiently localize the robot. Furthermore, it is able to deal with noisy sensors and approximate world models. The appropriateness of our approach is demonstrated empirically using a mobile robot in a structured office environment.

[1]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[2]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[3]  Wolfram Burgard,et al.  Map learning and high-speed navigation in RHINO , 1998 .

[4]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[5]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[6]  Donald A. Sofge,et al.  Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches , 1992 .

[7]  Leslie Pack Kaelbling,et al.  On the Complexity of Solving Markov Decision Problems , 1995, UAI.

[8]  Wolfram Burgard,et al.  The Mobile Robot Rhino , 1995, SNN Symposium on Neural Networks.

[9]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[10]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[11]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[12]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[13]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[14]  Sebastian Thrun,et al.  Integrating Grid-Based and Topological Maps for Mobile Robot Navigation , 1996, AAAI/IAAI, Vol. 2.

[15]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[16]  Wolfram Burgard,et al.  Fast Grid-Based Position TRacking for Mobile Robots , 1997, KI.

[17]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[18]  D. Sofge THE ROLE OF EXPLORATION IN LEARNING CONTROL , 1992 .

[19]  Jon M. Kleinberg,et al.  The localization problem for mobile robots , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  Sebastian Thrun,et al.  The role of exploration in learning control , 1992 .