Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic ‘confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses.

[1]  C. Wagner,et al.  Observation of chemical short-range order in an amorphous Ni40Ti60 alloy , 1980 .

[2]  C. Dong,et al.  Ni-Ta binary bulk metallic glasses , 2010 .

[3]  A. L. Greer,et al.  Confusion by design , 1993, Nature.

[4]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[5]  J. Schroers,et al.  Does the fracture toughness of bulk metallic glasses scatter , 2015 .

[6]  Stefano Curtarolo,et al.  The new face of rhodium alloys: revealing ordered structures from first principles. , 2010, Journal of the American Chemical Society.

[7]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[8]  J. Vlassak,et al.  Low-Temperature Synthesis of Ultra-High-Temperature Coatings of ZrB 2 Using Reactive Multilayers , 2014 .

[9]  Y. Waseda,et al.  Structure of Pt75P25 Glass , 1981, June 16.

[10]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[11]  P. Villars,et al.  Atomic environments in relation to compound prediction , 2000 .

[12]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[13]  H. Davies,et al.  The stabilities and kinetics of formation of glassy palladiumsilicon phases in the composition range 5 – 25 At.% Si , 1976 .

[14]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[15]  T. Fujita,et al.  Structural origins of Johari-Goldstein relaxation in a metallic glass , 2014, Nature Communications.

[16]  D. Bidwell,et al.  Formation , 2006, Revue Francophone d'Orthoptie.

[17]  R. Ray,et al.  Metallic glass formation and properties in Zr and Ti alloyed with Be—I the binary Zr-Be and Ti-Be systems☆ , 1979 .

[18]  W. Johnson,et al.  Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy , 1995 .

[19]  Wei Zhang,et al.  Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods , 2004 .

[20]  David B. Williams,et al.  Electronic structure of Pd-based bulk metallic glasses , 2000 .

[21]  K. Vecchio,et al.  Prediction of glass-forming compositions using liquidus temperature calculations , 2007 .

[22]  Kai Zhang,et al.  On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing. , 2015, The Journal of chemical physics.

[23]  J. Vlassak,et al.  Scanning AC nanocalorimetry study of Zr/B reactive multilayers , 2013 .

[24]  S. Curtarolo,et al.  AFLOW: An automatic framework for high-throughput materials discovery , 2012, 1308.5715.

[25]  William A. Goddard,et al.  Criteria for formation of metallic glasses: The role of atomic size ratio , 2003 .

[26]  W. Marsden I and J , 2012 .

[27]  M. Gao,et al.  High-Entropy Alloys: Fundamentals and Applications , 2016 .

[28]  Marco Buongiorno Nardelli,et al.  A RESTful API for exchanging materials data in the AFLOWLIB.org consortium , 2014, 1403.2642.

[29]  J. Graczyk Atomic arrangements in vapor quenched Pd80Si20 and Au35Ni65 amorphous alloys , 1980 .

[30]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[31]  J. Strom-Olsen,et al.  Crystallization characteristics of Ni‐Zr metallic glasses from Ni20Zr80 to Ni70Zr30 , 1983 .

[32]  Jan Schroers,et al.  Combinatorial development of bulk metallic glasses. , 2014, Nature materials.

[33]  Marco Buongiorno Nardelli,et al.  The AFLOW standard for high-throughput materials science calculations , 2015, 1506.00303.

[34]  K. Kelton A new model for nucleation in bulk metallic glasses , 1998 .

[35]  K. Dini,et al.  Hydrogen absorption in CuTi metallic glasses. I. X-ray diffraction measurements , 1985 .

[36]  D. Fontaine Cluster Approach to Order-Disorder Transformations in Alloys , 1994 .

[37]  A. J. Barnes,et al.  Thermoplastic blow molding of metals , 2011 .

[38]  J. Schroers Processing of Bulk Metallic Glass , 2010, Advanced materials.

[39]  T. Egami Formation and deformation of metallic glasses: Atomistic theory , 2006 .

[40]  C. Thompson,et al.  Matching Glass-Forming Ability with the Density of the Amorphous Phase , 2008, Science.

[41]  W. Löser,et al.  Solidification kinetics and phase formation of undercooled eutectic Ni-Nb melts , 1999 .

[42]  A. Hirata,et al.  Voronoi analysis of the structure of Cu–Zr and Ni–Zr metallic glasses , 2006 .

[43]  U. Dahlborg,et al.  Structural study of a phase transition in a NiP metallic glass , 1997 .

[44]  W. Johnson Bulk Glass-Forming Metallic Alloys: Science and Technology , 1999 .

[45]  Y. Liu,et al.  Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass , 2007 .

[46]  J. Vlassak,et al.  Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films , 2010 .

[47]  S. Curtarolo,et al.  Ordered structures in rhenium binary alloys from first-principles calculations. , 2011, Journal of the American Chemical Society.

[48]  Dong Wang,et al.  Bulk metallic glass formation in the binary Cu–Zr system , 2004 .

[49]  The glass-forming ability of model metal-metalloid alloys. , 2014, The Journal of chemical physics.

[50]  A M Russell,et al.  Science and technology. , 1972, Science.

[51]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[52]  Stefano Curtarolo,et al.  Uncovering compounds by synergy of cluster expansion and high-throughput methods. , 2010, Journal of the American Chemical Society.

[53]  I. Todd,et al.  Metallic glass formation in the binary Cu–Hf system , 2013, Journal of Materials Science.

[54]  M. Demetriou,et al.  Shaping metallic glasses by electromagnetic pulsing , 2016, Nature Communications.

[55]  M. Demetriou,et al.  Quantifying the origin of metallic glass formation , 2016, Nature Communications.

[56]  J. Logan The structure of an amorphous superconductor, lanthanum-gold , 1975 .

[57]  T. Egami Atomic level stresses , 2011 .

[58]  A. L. Greer,et al.  Metallic glasses…on the threshold , 2009 .

[59]  W. Liu,et al.  Thermodynamics and kinetics of the Mg 65 Cu 25 Y 10 bulk metallic glass forming liquid , 1998 .

[60]  Kenneth F. Kelton,et al.  Nucleation in condensed matter : applications in materials and biology , 2010 .

[61]  K. Vecchio,et al.  Evaluation of glass-forming ability in metals using multi-model techniques , 2009 .

[62]  W. Xu,et al.  Fabrication and mechanical properties of Ni¿Nb metallic glass particle-reinforced Al-based metal matrix composite , 2006 .

[63]  Gus L. W. Hart,et al.  Ordered phases in ruthenium binary alloys from high-throughput first-principles calculations , 2011 .

[64]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[65]  J. Vlassak,et al.  Combinatorial nanocalorimetry , 2010 .

[66]  W. Johnson,et al.  Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass , 2004 .

[67]  P. Villars,et al.  Atomic-environment classification of the cubic “intermetallic” structure types , 1992 .

[68]  C. Volkert,et al.  Crystallization characteristics of Fe‐Zr metallic glasses from Fe43Zr57 to Fe20Zr80 , 1985 .

[69]  Gus L. W. Hart,et al.  Subject Areas : Materials Science A Viewpoint on : Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals , Using a Computational First-Principles Approach , 2013 .

[70]  Evan Ma,et al.  Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys , 2008 .

[71]  E. Ma,et al.  Atomic level structure in multicomponent bulk metallic glass. , 2009, Physical review letters.

[72]  L. Xia,et al.  The glass forming ability of Cu-rich Cu–Hf binary alloys , 2006 .

[73]  C. Liu,et al.  A new glass-forming ability criterion for bulk metallic glasses , 2002 .

[74]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[75]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[76]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[77]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[78]  J. Schroers,et al.  Amorphous metal alloys form like plastics , 2006 .

[79]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[80]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[81]  J. Schroers,et al.  Asymmetric crystallization during cooling and heating in model glass-forming systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  J. H. Westbrook,et al.  Crystal structures of intermetallic compounds , 2000 .

[83]  Weihua Wang,et al.  Thermodynamics and Kinetics of Bulk Metallic Glass , 2007 .

[84]  AgY AgTi,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals : review of 80 binary alloys , 2008 .

[85]  汪卫华,et al.  Binary Cu-Zr Bulk Metallic Glasses , 2004 .

[86]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[87]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[88]  D. Turnbull Under what conditions can a glass be formed , 1969 .