Quantum Memristors with Superconducting Circuits

Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

[1]  Hans-J. Briegel,et al.  Framework for learning agents in quantum environments , 2015, ArXiv.

[2]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[3]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[4]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[5]  D. Langenberg Physical interpretation of the cos ϕ term and implications for detectors , 1974 .

[6]  Yvonne Y Gao,et al.  Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations. , 2014, Physical review letters.

[7]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[8]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[9]  J. Pekola,et al.  Suppression of the critical current of a balanced superconducting quantum interference device , 2008 .

[10]  Fabio L. Traversa,et al.  Universal Memcomputing Machines , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[11]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[12]  J. Hollenhorst QUANTUM LIMITS ON RESONANT MASS GRAVITATIONAL RADIATION DETECTORS , 1979 .

[13]  E. Solano,et al.  Quantum memristors , 2015, Scientific Reports.

[14]  Mikel Sanz,et al.  A Quantum Version of Wielandt's Inequality , 2009, IEEE Transactions on Information Theory.

[15]  S. Girvin,et al.  Decoherence of superconducting qubits caused by quasiparticle tunneling , 2012, 1207.7084.

[16]  L. Chua Nonlinear circuit foundations for nanodevices. I. The four-element torus , 2003 .

[17]  Massimiliano Di Ventra,et al.  On the physical properties of memristive, memcapacitive and meminductive systems , 2013, Nanotechnology.

[18]  Franco Nori,et al.  Qubit-based memcapacitors and meminductors , 2016, 1602.07230.

[19]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[20]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[21]  L. Chua Memristor-The missing circuit element , 1971 .

[22]  R. Srikanth,et al.  Quantifying quantumness via commutators: an application to quantum walk , 2013, 1312.1329.

[23]  Massimiliano Di Ventra,et al.  Superconducting Memristors , 2013, 1311.2975.

[24]  R. E. Harris Cosine and other terms in the Josephson tunneling current , 1974 .

[25]  R. Schoelkopf,et al.  Relaxation and frequency shifts induced by quasiparticles in superconducting qubits , 2011, 1106.0829.

[26]  L. Frunzio,et al.  Quasiparticle relaxation of superconducting qubits in the presence of flux. , 2011, Physical review letters.