Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A 90, 063627 (2014)] and, separately, the thermal friction coefficient $\ensuremath{\alpha}$ for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A 92, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate $\mathrm{\ensuremath{\Gamma}}$ is almost linearly proportional to $\ensuremath{\alpha}$. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of $\mathrm{\ensuremath{\Gamma}}$ on $\ensuremath{\alpha}$ is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clustered state out of decaying turbulence.

[1]  W. Kwon,et al.  Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate. , 2015, Physical review letters.

[2]  D. Paganin,et al.  Onsager vortex formation in Bose-Einstein condensates in two-dimensional power-law traps , 2015, 1511.06552.

[3]  V. Bagnato,et al.  Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates , 2015, 1507.03135.

[4]  W. Kwon,et al.  Thermal friction on quantum vortices in a Bose-Einstein condensate , 2015, 1509.02236.

[5]  Ashton S. Bradley,et al.  Spectral energy transport in two-dimensional quantum vortex dynamics , 2014, 1411.5755.

[6]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[7]  A. J. Allen,et al.  Generation and decay of two-dimensional quantum turbulence in a trapped Bose-Einstein condensate , 2014, 1408.3268.

[8]  Z. Newman,et al.  In situ imaging of vortices in Bose-Einstein condensates , 2014, 1405.7745.

[9]  Hongbao Zhang,et al.  Holographic thermal relaxation in superfluid turbulence , 2014, 1412.8417.

[10]  P. Chesler,et al.  Vortex annihilation and inverse cascades in two dimensional superfluid turbulence , 2014, 1411.2610.

[11]  Matthew J. Davis,et al.  Emergence of order from turbulence in an isolated planar superfluid. , 2014, Physical review letters.

[12]  N. Berloff,et al.  Modeling quantum fluid dynamics at nonzero temperatures , 2014, Proceedings of the National Academy of Sciences.

[13]  W. Kwon,et al.  Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates , 2014, 1403.4658.

[14]  S. Mukerjee,et al.  Finite-temperature dynamics of vortices in Bose-Einstein condensates , 2013, 1309.6205.

[15]  Ashton S. Bradley,et al.  Onsager-Kraichnan condensation in decaying two-dimensional quantum turbulence. , 2013, Physical review letters.

[16]  M. Bonitz,et al.  Quantum Hydrodynamics , 2013, 1310.0283.

[17]  P. Kevrekidis,et al.  Dynamics of a few corotating vortices in Bose-Einstein condensates. , 2013, Physical review letters.

[18]  M. Fisher,et al.  Propagating and annihilating vortex dipoles in the Gross-Pitaevskii equation , 2012, 1212.6389.

[19]  P. Chesler,et al.  Holographic Vortex Liquids and Superfluid Turbulence , 2012, Science.

[20]  Ashton S. Bradley,et al.  Inverse energy cascade in forced two-dimensional quantum turbulence. , 2012, Physical review letters.

[21]  Ashton S. Bradley,et al.  Characteristics of two-dimensional quantum turbulence in a compressible superfluid. , 2012, Physical review letters.

[22]  Ashton S. Bradley,et al.  Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence , 2012, 1204.1103.

[23]  L. Skrbek,et al.  Developed quantum turbulence and its decaya) , 2012 .

[24]  P. Stamp,et al.  Quantum dynamics of a Bose superfluid vortex. , 2011, Physical review letters.

[25]  Ashton S. Bradley,et al.  Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates , 2011, Physical Review A.

[26]  D. J. Frantzeskakis,et al.  Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates , 2011, 1104.0092.

[27]  D. Hall,et al.  Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate , 2010, Science.

[28]  M. Tsubota,et al.  Direct energy cascade in two-dimensional compressible quantum turbulence , 2010, 1002.3667.

[29]  Ashton S. Bradley,et al.  Observation of vortex dipoles in an oblate Bose-Einstein condensate. , 2009, Physical review letters.

[30]  Ashton S. Bradley,et al.  Decay of a quantum vortex: Test of nonequilibrium theories for warm Bose-Einstein condensates , 2009, 0912.3300.

[31]  V. Bagnato,et al.  Emergence of turbulence in an oscillating bose-einstein condensate. , 2009, Physical review letters.

[32]  C. Barenghi,et al.  Finite-temperature vortex dynamics in Bose-Einstein condensates , 2008, 0809.4400.

[33]  Eniko J. M. Madarassy,et al.  Vortex Dynamics in Trapped Bose-Einstein Condensate , 2008, 0806.2077.

[34]  W. Vinen,et al.  An Introduction to Quantum Turbulence , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  N. Berloff,et al.  Dissipative dynamics of superfluid vortices at nonzero temperatures. , 2007, Physical review letters.

[36]  M. Tsubota,et al.  Thermal dissipation in quantum turbulence. , 2006, Physical review letters.

[37]  T. Ebisuzaki,et al.  Dynamics of two-sign point vortices in positive and negative temperature states. , 2005, Physical review letters.

[38]  M. Prentiss,et al.  Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. , 2004, Physical review letters.

[39]  C. Adams,et al.  Controlled vortex-sound interactions in atomic Bose-Einstein condensates. , 2003, Physical review letters.

[40]  D. Pritchard,et al.  Imprinting vortices in a Bose-Einstein condensate using topological phases. , 2002, Physical review letters.

[41]  Patrick Tabeling,et al.  Two-dimensional turbulence: a physicist approach , 2002 .

[42]  Stanislav Boldyrev,et al.  Two-dimensional turbulence , 1980 .

[43]  P. Fedichev,et al.  DISSIPATIVE DYNAMICS OF A VORTEX STATE IN A TRAPPED BOSE-CONDENSED GAS , 1999, cond-mat/9902204.

[44]  L. J. Campbell,et al.  Statistics of two-dimensional point vortices and high-energy vortex states , 1991 .

[45]  Schwarz Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions. , 1985, Physical review. B, Condensed matter.

[46]  Carlo F. Barenghi,et al.  Friction on quantized vortices in helium II. A review , 1983 .

[47]  Robert H. Kraichnan,et al.  Statistical dynamics of two-dimensional flow , 1975, Journal of Fluid Mechanics.

[48]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[49]  H. E. Hall,et al.  The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  D V Osborne,et al.  The Rotation of Liquid Helium II , 1950 .

[51]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .