A stabilizing nonlinear model predictive control scheme for time-optimal point-to-point motions

This paper formulates a new scheme for time-optimal nonlinear model predictive control (TONMPC). In contrast to other TONMPC schemes for point-to-point motions found in the literature, it does not require a time transformation or a time scaling, which facilitates a stability proof. The practical applicability is shown with hardware-in-the-loop (HIL) experiments on an embedded platform using an illustrative control example, along with a comparison to one other time-optimal controller.

[1]  H. Troger,et al.  Time optimal control of overhead cranes with hoisting of the load , 1987, Autom..

[2]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[3]  Lino Guzzella,et al.  Time-optimal motions of robots in assembly tasks , 1986 .

[4]  John O'Reilly,et al.  The discrete linear time invariant time-optimal control problem - An overview , 1981, Autom..

[5]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[6]  F. Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997 .

[7]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  Jan Swevers,et al.  Time-Optimal Path Tracking for Robots: A Convex Optimization Approach , 2009, IEEE Transactions on Automatic Control.

[10]  Joel Andersson,et al.  A General-Purpose Software Framework for Dynamic Optimization (Een algemene softwareomgeving voor dynamische optimalisatie) , 2013 .

[11]  Stephen P. Boyd,et al.  Minimum-time speed optimisation over a fixed path , 2014, Int. J. Control.

[12]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[13]  Jan Swevers,et al.  Experimental validation of nonlinear MPC on an overhead crane using automatic code generation , 2012, 2012 American Control Conference (ACC).

[14]  C. Desoer,et al.  An optimal strategy for a saturating sampled-data system , 1961, IRE Transactions on Automatic Control.

[15]  Jie Zhao,et al.  Nonlinear Model Predictive Control of Robots Using Real-Time Optimization , 2004 .

[16]  Dragan Nesic,et al.  Output Dead Beat Control for a Class of Planar Polynomial Systems , 1998 .

[17]  Lucy Y. Pao,et al.  Input shaping and time-optimal control of flexible structures , 2003, Autom..

[18]  Torsten Bertram,et al.  Timed-Elastic-Bands for time-optimal point-to-point nonlinear model predictive control , 2015, 2015 European Control Conference (ECC).

[19]  S. Kahne,et al.  Optimal control: An introduction to the theory and ITs applications , 1967, IEEE Transactions on Automatic Control.

[20]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[21]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[22]  Jan Swevers,et al.  A model predictive control approach for time optimal point-to-point motion control , 2011 .

[23]  Jan Swevers,et al.  Embedded Optimization for Input Shaping , 2010, IEEE Transactions on Control Systems Technology.