Random times at which insiders can have free lunches

We consider models of time continuous financial markets with a regular trader and an insider who are able to invest into one risky asset. The insider's additional knowledge consists in his ability to stop at a random time which is inaccessible to the regular trader, such as the last passage of a certain level before maturity by some stock price process, or the time at which the stock price reaches its maximum during the trading interval. We show that under very mild assumptions on the coefficients of the diffusion process describing these price processes the information drift caused by the additional knowledge of the insider cannot be eliminated by an equivalent change of probability measure. As a consequence, all our models allow the insider to have free lunches with vanishing risk, or even to exercise arbitrage.

[1]  A. Grorud,et al.  Insider Trading in a Continuous Time Market Model , 1998 .

[2]  M. Yor Some Aspects Of Brownian Motion , 1992 .

[3]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[4]  T. Jeulin Semi-Martingales et Grossissement d’une Filtration , 1980 .

[5]  M. Yor Inegalites de martingales continues arretees a un temps quelconque: Le role de certains espaces BMO , 1985 .

[6]  Peter Imkeller Enlargement of the Wiener filtration by an absolutely continuous random variable via Malliavin’s calculus , 1996 .

[7]  F. Delbaen,et al.  Arbitrage possibilities in Bessel processes and their relations to local martingales , 1995 .

[8]  M. Yor Entropie d'une partition, et grossissement initial d'une filtration , 1985 .

[9]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[10]  A. Kyle Continuous Auctions and Insider Trading , 1985 .

[11]  Walter Schachermayer,et al.  The Existence of Absolutely Continuous Local Martingale Measures (1995) , 1995 .

[12]  Walter Schachermayer,et al.  The variance-optimal martingale measure for continuous processes , 1996 .

[13]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[14]  Hans Föllmer,et al.  Anticipation cancelled by a Girsanov transformation : a paradox on Wiener space , 1993 .

[15]  P. Imkeller,et al.  Additional logarithmic utility of an insider , 1998 .

[16]  M. Yor,et al.  Inegalités de martingales continues arretées à un temps quelconque , 1985 .

[17]  Ioannis Karatzas,et al.  ANTICIPATIVE PORTFOLIO OPTIMIZATION , 1996 .

[18]  J. Jacod,et al.  Grossissement initial, hypothese (H′) et theoreme de Girsanov , 1985 .

[19]  M. Yor Grossissement de filtrations et absolue continuite de noyaux , 1985 .

[20]  Elliott Robert.J.,et al.  Portfolio optimization and contingent claim pricing with differential information , 1997 .

[21]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[22]  Axel Grorud,et al.  Comment détecter le délit d'initiés ? , 1997 .

[23]  Monique Pontier,et al.  Free lunch and arbitrage possibilities in a financial market model with an insider , 2001 .

[24]  Dirk Becherer,et al.  Quantifying the Value of Initial Investment Information , 2000 .

[25]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[26]  ching-tang wu Construction of Brownian Motions in Enlarged Filtrations and Their Role in Mathematical Models of Insider Trading , 1999 .

[27]  I. Karatzas,et al.  Anticipative portfolio optimization , 1996, Advances in Applied Probability.

[28]  Monique Jeanblanc,et al.  Modelling of Default Risk: An Overview , 2000 .