Models for exceedances over high thresholds

We discuss the analysis of the extremes of data by modelling the sizes and occurrence of exceedances over high thresholds. The natural distribution for such exceedances, the generalized Pareto distribution, is described and its properties elucidated. Estimation and model-checking procedures for univariate and regression data are developed, and the influence of and information contained in the most extreme observations in a sample are studied. Models for seasonality and serial dependence in the point process of exceedances are described. Sets of data on river flows and wave heights are discussed, and an application to the siting of nuclear installations is described

[1]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  E. Zelenhasić,et al.  A Stochastic Model for Flood Analysis , 1970 .

[3]  J. Rousselle,et al.  Some Problems of Flood Analysis , 1971 .

[4]  The maximum term of uniformly mixing stationary processes , 1974 .

[5]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[6]  Grace L. Yang ESTIMATION OF A BIOMETRIC FUNCTION , 1978 .

[7]  Murray Aitkin,et al.  The Fitting of Exponential, Weibull and Extreme Value Distributions to Complex Censored Survival Data using GLIM , 1980 .

[8]  M. Newby,et al.  The Properties of Moment Estimators for the Weibull Distribution Based on the Sample Coeffkient of Variation , 1980 .

[9]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[10]  M. Ivette Gomes,et al.  An I-Dimensional Limiting Distribution Function of Largest Values and Its Relevance to the Statistical Theory of Extremes , 1981 .

[11]  D. Pregibon Logistic Regression Diagnostics , 1981 .

[12]  A new distribution for annual extremes of enivromental variables , 1982 .

[13]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[14]  P. Prescott,et al.  Maximum likeiihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples , 1983 .

[15]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[16]  Richard L. Smith Threshold Methods for Sample Extremes , 1984 .

[17]  Anthony C. Davison,et al.  Modelling Excesses over High Thresholds, with an Application , 1984 .

[18]  B. Jørgensen The Delta Algorithm and GLIM , 1984 .

[19]  Richard Coe,et al.  A Model Fitting Analysis of Daily Rainfall Data , 1984 .

[20]  H. ApSimon,et al.  Long-range atmospheric dispersion of radioisotopes—i. The MESOS model , 1985 .

[21]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[22]  J. V. Witter,et al.  Testing exponentiality against generalised Pareto distribution , 1985 .

[23]  J. Hosking Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1985 .

[24]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[25]  A statistical model for deriving probability distributions of contamination for accidental releases , 1986 .

[26]  M. A. J. Van Montfort,et al.  The generalized Pareto distribution applied to rainfall depths. , 1986 .

[27]  Statistical extremes and applications , 1986 .

[28]  Extreme values of non-stationary random sequences , 1986 .

[29]  Richard L. Smith Extreme value theory based on the r largest annual events , 1986 .

[30]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[31]  Richard L. Smith,et al.  A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .

[32]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[33]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[34]  H. Joe Estimation of quantiles of the maximum of N observations , 1987 .

[35]  Holger Rootzén,et al.  Extreme values: theory and technical applications (with discussion) , 1987 .

[36]  Jonathan A. Tawn,et al.  An extreme-value theory model for dependent observations , 1988 .

[37]  Extreme value theory for dependent sequences via the stein-chen method of poisson approximation , 1988 .

[38]  Malcolm R Leadbetter,et al.  On the exceedance point process for a stationary sequence , 1988 .

[39]  A counterexample concerning the extremal index , 1988 .

[40]  H. Rootzén,et al.  External Theory for Stochastic Processes. , 1988 .

[41]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[42]  R. Reiss Approximate Distributions of Order Statistics , 1989 .

[43]  A. C. Davison,et al.  Deviance residuals and normal scores plots , 1989 .

[44]  Allan J. Macleod A Remark on Algorithm as 215: Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1989 .