Successive Mappings: An Approach to Polygonal Mesh Simplification with Guaranteed Error Bounds

We present the use of mapping functions to automatically generate levels of detail with known error bounds for polygonal models. We develop a piece-wise linear mapping function for each simplification operation and use this function to measure deviation of the new surface from both the previous level of detail and from the original surface. In addition, we use the mapping function to compute appropriate texture coordinates if the original model has texture coordinates at its vertices. Our overall algorithm uses edge collapse operations. We present rigorous procedures for the generation of local orthogonal projections to the plane as well as for the selection of a new vertex position resulting from the edge collapse operation. The algorithm computes guaranteed error bounds on surface deviation and produces an entire continuum of levels of detail with mappings between them. We demonstrate the effectiveness of our algorithm on several models: a Ford Bronco consisting of over 300 parts and 70, 000 triangles, a textured lion model consisting of 49 parts and 86, 000 triangles, a textured, wrinkled torus consisting of 79, 000 triangles, a dragon model consisting of 871, 000 triangles, a Buddha model consisting of 1,000,000 triangles, and an armadillo model consisting of 2, 000, 000 triangles.

[1]  Enrico Puppo,et al.  Building and traversing a surface at variable resolution , 1997 .

[2]  Hugues Hoppe,et al.  New quadric metric for simplifying meshes with appearance attributes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[3]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[4]  Leila De Floriani,et al.  Building and traversing a surface at variable resolution , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  Peter Lindstrom,et al.  Fast and memory efficient polygonal simplification , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[6]  Jihad El-Sana,et al.  Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[7]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[8]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[9]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[10]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[11]  Herbert Edelsbrunner,et al.  Topology preserving edge contraction , 1998 .

[12]  Dinesh Manocha,et al.  Simplifying polygonal models using successive mappings , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[13]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[14]  Carl Erikson,et al.  Polygonal Simplification: An Overview , 1996 .

[15]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[16]  Chandrajit L. Bajaj,et al.  Decimation of 2D Scalar Data with Error Control , 1995 .

[17]  Peter Lindstrom,et al.  Evaluation of Memoryless Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[18]  Amitabh Varshney,et al.  Hierarchical geometric approximations , 1994 .

[19]  Michael Garland,et al.  Multiresolution Modeling for Fast Rendering , 1999 .

[20]  Jarek Rossignac,et al.  Multi-resolution 3D approximations for rendering complex scenes , 1993, Modeling in Computer Graphics.

[21]  Reinhard Klein,et al.  Building Multiresolution Models for Fast Interactive Visualization , 1997 .

[22]  Kenneth L. Clarkson,et al.  Algorithms for Polytope Covering and Approximation , 1993, WADS.

[23]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[24]  Robert E. Beck,et al.  Elementary Linear Programming with Applications , 1979 .

[25]  David Salesin,et al.  Interactive multiresolution surface viewing , 1996, SIGGRAPH.

[26]  John Rohlf,et al.  IRIS performer: a high performance multiprocessing toolkit for real-time 3D graphics , 1994, SIGGRAPH.

[27]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[28]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[29]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[30]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[31]  William A. Barrett,et al.  An algorithm for continuous resolution polygonalizations of a discrete surface , 1994 .

[32]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[33]  D. T. Lee,et al.  An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.

[34]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[35]  Hans-Peter Seidel,et al.  A General Framework for Mesh Decimation , 1998, Graphics Interface.

[36]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[37]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[38]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[39]  Michael Zyda,et al.  Simplification of objects rendered by polygonal approximations , 1991, Comput. Graph..

[40]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[41]  Chandrajit L. Bajaj,et al.  Error-bounded reduction of triangle meshes with multivariate data , 1996, Electronic Imaging.

[42]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, IEEE Visualization.

[43]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[44]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[45]  Amitabh Varshney,et al.  Dynamic view-dependent simplification for polygonal models , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[46]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[47]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[48]  Jarek Rossignac,et al.  BRUSH as a Walkthrough System for Architectural Models , 1995 .

[49]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[50]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[51]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[52]  Joseph S. B. Mitchell,et al.  Separation and approximation of polyhedral surfaces , 1991 .

[53]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..