Increasing stability in an inverse problem for the acoustic equation

In this work, we study the inverse boundary value problem of determining the refractive index in the acoustic equation. It is known that this inverse problem is ill-posed. Nonetheless, we show that the ill-posedness decreases when we increase the frequency and the stability estimate changes from logarithmic type for low frequencies to a Lipschitz estimate for large frequencies.

[1]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[2]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[3]  G. Burton Sobolev Spaces , 2013 .

[4]  V. Isakov Increased stability in the continuation for the Helmholtz equation with variable coefficient , 2005 .

[5]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[6]  R. Novikov,et al.  A global stability estimate for the Gel'fand–Calderón inverse problem in two dimensions , 2010, 1008.4888.

[7]  Victor Isakov,et al.  Increased stability in the continuation of solutions to the Helmholtz equation , 2004 .

[8]  Michael E. Taylor,et al.  Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem , 2002, math/0211376.

[9]  G. Uhlmann,et al.  Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map , 2004, math/0410546.

[10]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[11]  On increased stability in the continuation of the Helmholtz equation , 2007 .

[12]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[13]  Victor Isakov,et al.  Increased stability for the Schr¨odinger potential from the Dirichlet-to-Neumann map , 2009 .

[14]  V. Isakov,et al.  Increasing stability of the continuation for the Maxwell system , 2010 .

[15]  Junshan Lin,et al.  A multi-frequency inverse source problem , 2010 .

[16]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .