Differential KO-theory: Constructions, computations, and applications
暂无分享,去创建一个
[1] M. Narasimhan,et al. EXISTENCE OF UNIVERSAL CONNECTIONS II. , 1961 .
[2] S. Weinberger,et al. The signature operator at 2 , 2006 .
[3] M. Atiyah,et al. Riemann-Roch theorems for differentiable manifolds , 1959 .
[4] J. Dupont,et al. Integration of simplicial forms and Deligne cohomology , 2004, math/0402059.
[5] R. Deeley. R/Z-valued index theory via geometric K-homology , 2012, 1206.5662.
[6] E. Thomas. The torsion Pontryagin classes , 1962 .
[7] J. Lott. $\mathbf{R/Z}$ index theory , 1994 .
[8] Michael Atiyah,et al. The index of elliptic operators on compact manifolds , 1963 .
[9] H. Sati. TWISTED TOPOLOGICAL STRUCTURES RELATED TO M-BRANES , 2010, 1008.1755.
[10] R. James Milgram,et al. The classifying spaces for surgery and cobordism of manifolds , 1979 .
[11] Yuli B. Rudyak. On Thom spectra, orientability, and cobordism , 1998 .
[12] R. Switzer. Vector Bundles and K-Theory , 2002 .
[13] D. Kishimoto,et al. $KO$-theory of exceptional flag manifolds , 2013 .
[14] Jonathan Rosenberg,et al. T-Duality for Orientifolds and Twisted KR-Theory , 2013, 1306.1779.
[15] H. Sati,et al. Parametrized geometric cobordism and smooth Thom stacks , 2017, 1709.00686.
[16] H. Sati. GEOMETRY OF SPIN AND SPIN c STRUCTURES IN THE M-THEORY PARTITION FUNCTION , 2010, 1005.1700.
[17] E. Thomas. Homotopy classification of maps by cohomology homomorphisms , 1964 .
[18] M. Karoubi. K-Theory: An Introduction , 1978 .
[19] D. Freed. LECTURES ON TWISTED K-THEORY AND ORIENTIFOLDS , 2012 .
[20] U. Suter,et al. Some applications of topological K-theory , 1980 .
[21] I. M. Singer,et al. Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.
[22] KO-HOMOLOGY AND TYPE I STRING THEORY , 2006, hep-th/0610177.
[23] M. Atiyah,et al. Vector bundles and homogeneous spaces , 1961 .
[24] M. Datta. Universal property of chern character forms of the canonical connection , 2004 .
[25] Colin Clarke. Benjamin , 2013, Tempo.
[26] J. F. Adams,et al. On complex Stiefel manifolds , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] G. Segal,et al. Categories and cohomology theories , 1974 .
[28] U. Bunke,et al. Differential cohomology theories as sheaves of spectra , 2013, 1311.3188.
[29] D. Sullivan,et al. Characters for Complex Bundles and their Connections , 2018, 1803.07129.
[30] R. Bruner,et al. Connective Real $K$-Theory of Finite Groups , 2010 .
[31] H. Sati,et al. Higher-twisted periodic smooth Deligne cohomology , 2017, Homology, Homotopy and Applications.
[32] M. Karoubi,et al. Graded brauer groups and K-theory with local coefficients , 1970 .
[33] J. Nash. The imbedding problem for Riemannian manifolds , 1956 .
[34] Urs Schreiber,et al. Cech cocycles for differential characteristic classes -- An infinity-Lie theoretic construction , 2010, 1011.4735.
[35] E. Brown,et al. The structure of the Spin cobordism ring , 1967 .
[36] Michael A. Mandell,et al. Model Categories of Diagram Spectra , 2001, Proceedings of the London Mathematical Society.
[37] J. Figueroa-O’Farrill,et al. Spin geometry , 2019, Graduate Studies in Mathematics.
[38] Urs Schreiber,et al. Twisted Differential String and Fivebrane Structures , 2009, 0910.4001.
[39] E. Witten. Five-brane effective action in M theory , 1996, hep-th/9610234.
[40] U. Bunke. Adams operations in smooth $K$–theory , 2009, 0904.4355.
[41] G. James,et al. Breathers in inhomogeneous nonlinear lattices : an analysis via centre manifold reduction , 2007, 0710.4114.
[42] Scott O. Wilson,et al. An Elementary Differential Extension of Odd K-theory , 2012, 1211.4477.
[43] D. Sullivan,et al. Structured Vector Bundles Define Differential K-Theory , 2008, 0810.4935.
[44] Alexander D. Rahm. Complexifiable characteristic classes , 2011, Journal of Homotopy and Related Structures.
[45] R. Bott. A note on the $KO$-theory of sphere-bundles , 1962 .
[46] J. Adams,et al. Infinite Loop Spaces , 1978 .
[47] W. Meier. Complex and real K-theory and localization , 1979 .
[48] Paul G. Goerss,et al. Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.
[49] D. Freed. Classical Chern-Simons Theory, 1 , 1995 .
[50] V. M. Buhštaber. MODULES OF DIFFERENTIALS OF THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE. II , 1969 .
[51] H. Sati,et al. Spectral sequences in smooth generalized cohomology , 2016, 1605.03444.
[52] D. Kishimoto. $KO$-theory of complex Stiefel manifolds , 2004 .
[53] D. Fiorenza,et al. A Higher Stacky Perspective on Chern–Simons Theory , 2013, 1301.2580.
[54] D. Freed,et al. An Index Theorem in Differential K -Theory , 2010 .
[55] H. Sati,et al. Twisted differential generalized cohomology theories and their Atiyah–Hirzebruch spectral sequence , 2017, Algebraic & Geometric Topology.
[56] Urs Schreiber,et al. Differential cohomology in a cohesive infinity-topos , 2013, 1310.7930.
[57] P. Watts. Connections , 1994 .
[58] L. Takhtajan,et al. On Bott–Chern forms and their applications , 2011, 1102.1105.
[59] Michael Atiyah,et al. K -THEORY AND REALITY , 1966 .
[60] Serge Ochanine. Elliptic genera, modular forms overKO*, and the Brown-Kervaire invariant , 1991 .
[61] C. Maunder. The spectral sequence of an extraordinary cohomology theory , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[62] D. Freed,et al. Spin structures and superstrings , 2010, 1007.4581.
[63] Stiefel—Whitney currents , 1996, dg-ga/9609005.
[64] Friedrich Hirzebruch. Topological methods in algebraic geometry , 1966 .
[65] H. Sati,et al. Twisted smooth Deligne cohomology , 2017, 1706.02742.
[66] H. Sati. Ninebrane structures , 2014, 1405.7686.
[67] E. Thomas. A note on certain polynomial algebras , 1960 .
[68] M. Joachim. A symmetric ring spectrum representing KO-theory , 2001 .
[69] Michikazu Fujii. K⊂0-groups of projective spaces , 1967 .
[70] Symmetric spectra , 1998, math/9801077.
[71] Christian Bär. ON HARMONIC SPINORS , 1998 .
[72] J. Zweck. The Stiefel-Whitney spark , 2001 .
[73] D. Arlettaz. The order of the differentials in the Atiyah-Hirzebruch spectral sequence , 1992 .
[74] D. Mclaughlin. Local formulae for Stiefel-Whitney classes , 1996 .
[75] Marcus Zibrowius. KO-rings of full flag varieties , 2012, 1208.1497.
[76] H. Sati. An approach to anomalies in M-theory via KSpin , 2007, 0705.3484.
[77] Index theory, eta forms, and Deligne cohomology , 2002, math/0201112.
[78] H. Samelson,et al. Topology of Lie groups , 1952 .
[79] Robert M. Switzer,et al. Algebraic topology--homotopy and homology , 1975 .
[80] R. L. Cohen,et al. Umkehr Maps , 2007, 0711.0540.
[81] A. Blumberg,et al. Twists of K-theory and TMF , 2010, 1002.3004.
[82] H. Sati. Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures , 2011, 1109.4461.
[83] REAL K-COHOMOLOGY OF COMPLEX PROJECTIVE SPACES , 2007 .
[84] M. Atiyah,et al. Analytic cycles on complex manifolds , 1962 .
[85] Yuji Terashima,et al. A fiber integration formula for the smooth Deligne cohomology , 2000 .
[86] A. Kuku,et al. Higher Algebraic K-Theory , 2006 .
[87] Daniel S. Freed. Dirac Charge Quantization and Generalized Differential Cohomology , 2000 .
[88] H. Minami. The representation rings of orthogonal groups , 1971 .
[89] T. Nikolaus,et al. On the relation between K- and L-theory of $$C^*$$C∗-algebras , 2016, 1608.02903.
[90] Chi-Kwong Fok. THE REAL K-THEORY OF COMPACT LIE GROUPS , 2013, 1308.3871.
[91] D. Kishimoto,et al. $KO$-theory of flag manifolds , 2004 .
[92] A. Borel,et al. CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.* , 1958 .
[93] James Simons,et al. Differential characters and geometric invariants , 1985 .
[94] H. Sati,et al. L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.
[95] D. Quillen. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups , 1971 .
[96] HZ -algebra spectra are differential graded algebras , 2002, math/0209215.
[97] Mikio Nakahara,et al. Top-down: , 2020, Limits of Supranational Justice.
[98] A.. CLIFFORD MODULES , 1964 .
[99] José Manuel Gómez,et al. Actions of (,) spaces on -theory and uniqueness of twisted -theory , 2014 .
[100] D. Lipsky. Cocycle Constructions for Topological Field Theories , 2010 .
[101] J. Cheeger,et al. Eta invariants and their adiabatic limits , 1989 .
[102] X. Ma,et al. Differential K-theory and localization formula for $$\eta $$-invariants , 2018, Inventiones mathematicae.
[103] E. Thomas. ON THE COHOMOLOGY OF THE REAL GRASSMANN COMPLEXES AND THE CHARACTERISTIC CLASSES OF n-PLANE BUNDLES(') , 1960 .
[104] H. Sati,et al. Primary operations in differential cohomology , 2016, Advances in Mathematics.
[105] J. Lurie. Higher Topos Theory , 2006, math/0608040.
[106] Jonathan Rosenberg,et al. Continuous-trace algebras from the bundle theoretic point of view , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[107] S. Ferry,et al. Analytic Novikov for topologists , 1995 .
[108] D. Sullivan,et al. Axiomatic characterization of ordinary differential cohomology , 2007, math/0701077.
[109] Real bundle gerbes, orientifolds and twisted $KR$-homology , 2016, Advances in Theoretical and Mathematical Physics.
[110] T. Schick,et al. Differential K-Theory: A Survey , 2010, 1011.6663.
[111] Jacques Distler,et al. Orientifold Precis , 2009, 0906.0795.
[112] Julia Collins,et al. HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.
[113] Yuji Terashima,et al. Higher-dimensional parallel transports , 2001 .
[114] John D. S. Jones,et al. Monopoles, braid groups, and the dirac operator , 1993 .
[115] H. Sati,et al. Massey products in differential cohomology via stacks , 2015, 1510.06366.
[116] J. Adams,et al. Stable homotopy and generalised homology , 1974 .
[117] Urs Schreiber,et al. Extended higher cup-Product Chern-Simons theories , 2012, 1207.5449.
[118] H. Sati,et al. Fivebrane Structures , 2008, 0805.0564.