Differential KO-theory: Constructions, computations, and applications

We provide a systematic and detailed treatment of differential refinements of KO-theory. We explain how various flavors capture geometric aspects in different but related ways, highlighting the utility of each. While general axiomatics exist, no explicit constructions seem to have appeared before. This fills a gap in the literature in which K-theory is usually worked out leaving KO-theory essentially untouched, with only scattered partial information in print. We compare to the complex case, highlighting which constructions follow analogously and which are much more subtle. We construct a pushforward and differential refinements of genera, leading to a Riemann-Roch theorem for $\widehat{\rm KO}$-theory. We also construct the corresponding Atiyah-Hirzebruch spectral sequence (AHSS) and explicitly identify the differentials, including ones which mix geometric and topological data. This allows us to completely characterize the image of the Pontrjagin character. Then we illustrate with examples and applications, including higher tangential structures, Adams operations, and a differential Wu formula.

[1]  M. Narasimhan,et al.  EXISTENCE OF UNIVERSAL CONNECTIONS II. , 1961 .

[2]  S. Weinberger,et al.  The signature operator at 2 , 2006 .

[3]  M. Atiyah,et al.  Riemann-Roch theorems for differentiable manifolds , 1959 .

[4]  J. Dupont,et al.  Integration of simplicial forms and Deligne cohomology , 2004, math/0402059.

[5]  R. Deeley R/Z-valued index theory via geometric K-homology , 2012, 1206.5662.

[6]  E. Thomas The torsion Pontryagin classes , 1962 .

[7]  J. Lott $\mathbf{R/Z}$ index theory , 1994 .

[8]  Michael Atiyah,et al.  The index of elliptic operators on compact manifolds , 1963 .

[9]  H. Sati TWISTED TOPOLOGICAL STRUCTURES RELATED TO M-BRANES , 2010, 1008.1755.

[10]  R. James Milgram,et al.  The classifying spaces for surgery and cobordism of manifolds , 1979 .

[11]  Yuli B. Rudyak On Thom spectra, orientability, and cobordism , 1998 .

[12]  R. Switzer Vector Bundles and K-Theory , 2002 .

[13]  D. Kishimoto,et al.  $KO$-theory of exceptional flag manifolds , 2013 .

[14]  Jonathan Rosenberg,et al.  T-Duality for Orientifolds and Twisted KR-Theory , 2013, 1306.1779.

[15]  H. Sati,et al.  Parametrized geometric cobordism and smooth Thom stacks , 2017, 1709.00686.

[16]  H. Sati GEOMETRY OF SPIN AND SPIN c STRUCTURES IN THE M-THEORY PARTITION FUNCTION , 2010, 1005.1700.

[17]  E. Thomas Homotopy classification of maps by cohomology homomorphisms , 1964 .

[18]  M. Karoubi K-Theory: An Introduction , 1978 .

[19]  D. Freed LECTURES ON TWISTED K-THEORY AND ORIENTIFOLDS , 2012 .

[20]  U. Suter,et al.  Some applications of topological K-theory , 1980 .

[21]  I. M. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[22]  KO-HOMOLOGY AND TYPE I STRING THEORY , 2006, hep-th/0610177.

[23]  M. Atiyah,et al.  Vector bundles and homogeneous spaces , 1961 .

[24]  M. Datta Universal property of chern character forms of the canonical connection , 2004 .

[25]  Colin Clarke Benjamin , 2013, Tempo.

[26]  J. F. Adams,et al.  On complex Stiefel manifolds , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  G. Segal,et al.  Categories and cohomology theories , 1974 .

[28]  U. Bunke,et al.  Differential cohomology theories as sheaves of spectra , 2013, 1311.3188.

[29]  D. Sullivan,et al.  Characters for Complex Bundles and their Connections , 2018, 1803.07129.

[30]  R. Bruner,et al.  Connective Real $K$-Theory of Finite Groups , 2010 .

[31]  H. Sati,et al.  Higher-twisted periodic smooth Deligne cohomology , 2017, Homology, Homotopy and Applications.

[32]  M. Karoubi,et al.  Graded brauer groups and K-theory with local coefficients , 1970 .

[33]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[34]  Urs Schreiber,et al.  Cech cocycles for differential characteristic classes -- An infinity-Lie theoretic construction , 2010, 1011.4735.

[35]  E. Brown,et al.  The structure of the Spin cobordism ring , 1967 .

[36]  Michael A. Mandell,et al.  Model Categories of Diagram Spectra , 2001, Proceedings of the London Mathematical Society.

[37]  J. Figueroa-O’Farrill,et al.  Spin geometry , 2019, Graduate Studies in Mathematics.

[38]  Urs Schreiber,et al.  Twisted Differential String and Fivebrane Structures , 2009, 0910.4001.

[39]  E. Witten Five-brane effective action in M theory , 1996, hep-th/9610234.

[40]  U. Bunke Adams operations in smooth $K$–theory , 2009, 0904.4355.

[41]  G. James,et al.  Breathers in inhomogeneous nonlinear lattices : an analysis via centre manifold reduction , 2007, 0710.4114.

[42]  Scott O. Wilson,et al.  An Elementary Differential Extension of Odd K-theory , 2012, 1211.4477.

[43]  D. Sullivan,et al.  Structured Vector Bundles Define Differential K-Theory , 2008, 0810.4935.

[44]  Alexander D. Rahm Complexifiable characteristic classes , 2011, Journal of Homotopy and Related Structures.

[45]  R. Bott A note on the $KO$-theory of sphere-bundles , 1962 .

[46]  J. Adams,et al.  Infinite Loop Spaces , 1978 .

[47]  W. Meier Complex and real K-theory and localization , 1979 .

[48]  Paul G. Goerss,et al.  Simplicial Homotopy Theory , 2009, Modern Birkhäuser Classics.

[49]  D. Freed Classical Chern-Simons Theory, 1 , 1995 .

[50]  V. M. Buhštaber MODULES OF DIFFERENTIALS OF THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE. II , 1969 .

[51]  H. Sati,et al.  Spectral sequences in smooth generalized cohomology , 2016, 1605.03444.

[52]  D. Kishimoto $KO$-theory of complex Stiefel manifolds , 2004 .

[53]  D. Fiorenza,et al.  A Higher Stacky Perspective on Chern–Simons Theory , 2013, 1301.2580.

[54]  D. Freed,et al.  An Index Theorem in Differential K -Theory , 2010 .

[55]  H. Sati,et al.  Twisted differential generalized cohomology theories and their Atiyah–Hirzebruch spectral sequence , 2017, Algebraic & Geometric Topology.

[56]  Urs Schreiber,et al.  Differential cohomology in a cohesive infinity-topos , 2013, 1310.7930.

[57]  P. Watts Connections , 1994 .

[58]  L. Takhtajan,et al.  On Bott–Chern forms and their applications , 2011, 1102.1105.

[59]  Michael Atiyah,et al.  K -THEORY AND REALITY , 1966 .

[60]  Serge Ochanine Elliptic genera, modular forms overKO*, and the Brown-Kervaire invariant , 1991 .

[61]  C. Maunder The spectral sequence of an extraordinary cohomology theory , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[62]  D. Freed,et al.  Spin structures and superstrings , 2010, 1007.4581.

[63]  Stiefel—Whitney currents , 1996, dg-ga/9609005.

[64]  Friedrich Hirzebruch Topological methods in algebraic geometry , 1966 .

[65]  H. Sati,et al.  Twisted smooth Deligne cohomology , 2017, 1706.02742.

[66]  H. Sati Ninebrane structures , 2014, 1405.7686.

[67]  E. Thomas A note on certain polynomial algebras , 1960 .

[68]  M. Joachim A symmetric ring spectrum representing KO-theory , 2001 .

[69]  Michikazu Fujii K⊂0-groups of projective spaces , 1967 .

[70]  Symmetric spectra , 1998, math/9801077.

[71]  Christian Bär ON HARMONIC SPINORS , 1998 .

[72]  J. Zweck The Stiefel-Whitney spark , 2001 .

[73]  D. Arlettaz The order of the differentials in the Atiyah-Hirzebruch spectral sequence , 1992 .

[74]  D. Mclaughlin Local formulae for Stiefel-Whitney classes , 1996 .

[75]  Marcus Zibrowius KO-rings of full flag varieties , 2012, 1208.1497.

[76]  H. Sati An approach to anomalies in M-theory via KSpin , 2007, 0705.3484.

[77]  Index theory, eta forms, and Deligne cohomology , 2002, math/0201112.

[78]  H. Samelson,et al.  Topology of Lie groups , 1952 .

[79]  Robert M. Switzer,et al.  Algebraic topology--homotopy and homology , 1975 .

[80]  R. L. Cohen,et al.  Umkehr Maps , 2007, 0711.0540.

[81]  A. Blumberg,et al.  Twists of K-theory and TMF , 2010, 1002.3004.

[82]  H. Sati Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures , 2011, 1109.4461.

[83]  REAL K-COHOMOLOGY OF COMPLEX PROJECTIVE SPACES , 2007 .

[84]  M. Atiyah,et al.  Analytic cycles on complex manifolds , 1962 .

[85]  Yuji Terashima,et al.  A fiber integration formula for the smooth Deligne cohomology , 2000 .

[86]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[87]  Daniel S. Freed Dirac Charge Quantization and Generalized Differential Cohomology , 2000 .

[88]  H. Minami The representation rings of orthogonal groups , 1971 .

[89]  T. Nikolaus,et al.  On the relation between K- and L-theory of $$C^*$$C∗-algebras , 2016, 1608.02903.

[90]  Chi-Kwong Fok THE REAL K-THEORY OF COMPACT LIE GROUPS , 2013, 1308.3871.

[91]  D. Kishimoto,et al.  $KO$-theory of flag manifolds , 2004 .

[92]  A. Borel,et al.  CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.* , 1958 .

[93]  James Simons,et al.  Differential characters and geometric invariants , 1985 .

[94]  H. Sati,et al.  L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.

[95]  D. Quillen The mod 2 cohomology rings of extra-special 2-groups and the spinor groups , 1971 .

[96]  HZ -algebra spectra are differential graded algebras , 2002, math/0209215.

[97]  Mikio Nakahara,et al.  Top-down: , 2020, Limits of Supranational Justice.

[98]  A. CLIFFORD MODULES , 1964 .

[99]  José Manuel Gómez,et al.  Actions of (,) spaces on -theory and uniqueness of twisted -theory , 2014 .

[100]  D. Lipsky Cocycle Constructions for Topological Field Theories , 2010 .

[101]  J. Cheeger,et al.  Eta invariants and their adiabatic limits , 1989 .

[102]  X. Ma,et al.  Differential K-theory and localization formula for $$\eta $$-invariants , 2018, Inventiones mathematicae.

[103]  E. Thomas ON THE COHOMOLOGY OF THE REAL GRASSMANN COMPLEXES AND THE CHARACTERISTIC CLASSES OF n-PLANE BUNDLES(') , 1960 .

[104]  H. Sati,et al.  Primary operations in differential cohomology , 2016, Advances in Mathematics.

[105]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[106]  Jonathan Rosenberg,et al.  Continuous-trace algebras from the bundle theoretic point of view , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[107]  S. Ferry,et al.  Analytic Novikov for topologists , 1995 .

[108]  D. Sullivan,et al.  Axiomatic characterization of ordinary differential cohomology , 2007, math/0701077.

[109]  Real bundle gerbes, orientifolds and twisted $KR$-homology , 2016, Advances in Theoretical and Mathematical Physics.

[110]  T. Schick,et al.  Differential K-Theory: A Survey , 2010, 1011.6663.

[111]  Jacques Distler,et al.  Orientifold Precis , 2009, 0906.0795.

[112]  Julia Collins,et al.  HOMOLOGICAL ALGEBRA , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[113]  Yuji Terashima,et al.  Higher-dimensional parallel transports , 2001 .

[114]  John D. S. Jones,et al.  Monopoles, braid groups, and the dirac operator , 1993 .

[115]  H. Sati,et al.  Massey products in differential cohomology via stacks , 2015, 1510.06366.

[116]  J. Adams,et al.  Stable homotopy and generalised homology , 1974 .

[117]  Urs Schreiber,et al.  Extended higher cup-Product Chern-Simons theories , 2012, 1207.5449.

[118]  H. Sati,et al.  Fivebrane Structures , 2008, 0805.0564.