A hybrid approach for parameter optimization of RBF-AR model

A hybrid global-local optimization algorithm for radial basis function (RBF) networks and RBF nets-based state-dependent autoregressive (RBF-AR) models parameter estimation is presented. This algorithm (EA-SNPOM) effectively combines an evolutionary algorithm (EA) with a gradient-based search strategy named the structured nonlinear parameter optimization method (SNPOM). The hybrid approach provides a global search with the EA and a local search via the SNPOM. The effectiveness of the resulting combination is demonstrated by several examples.

[1]  Min Gan,et al.  An adaptive decision maker for constrained evolutionary optimization , 2010, Appl. Math. Comput..

[2]  George W. Irwin,et al.  A hybrid linear/nonlinear training algorithm for feedforward neural networks , 1998, IEEE Trans. Neural Networks.

[3]  Tohru Ozaki,et al.  Reconstructing the Nonlinear Dynamics of Epilepsy Data Using Nonlinear Time series Analysis , 1999 .

[4]  Marimuthu Palaniswami,et al.  Effects of moving the center's in an RBF network , 2002, IEEE Trans. Neural Networks.

[5]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[6]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[7]  Stavros J. Perantonis,et al.  Two highly efficient second-order algorithms for training feedforward networks , 2002, IEEE Trans. Neural Networks.

[8]  S RzepczynskiMark Neural Networks in Finance: Gaining Predictive Edge in the Markets (a review) , 2007 .

[9]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[10]  Yukihiro Toyoda,et al.  A parameter optimization method for radial basis function type models , 2003, IEEE Trans. Neural Networks.

[11]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[12]  Günter Wozny,et al.  A hybrid optimization approach to parameter estimation , 2007 .

[13]  M. Priestley STATE‐DEPENDENT MODELS: A GENERAL APPROACH TO NON‐LINEAR TIME SERIES ANALYSIS , 1980 .

[14]  Marimuthu Palaniswami,et al.  Effects of moving the centers in an RBF network , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[15]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[16]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[17]  H. Akaike A new look at the statistical model identification , 1974 .

[18]  Kalyanmoy Deb,et al.  A population-based algorithm-generator for real-parameter optimization , 2005, Soft Comput..

[19]  Kazushi Nakano,et al.  Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial Application , 2007, IEEE Transactions on Control Systems Technology.

[20]  Kazushi Nakano,et al.  Nonlinear system modeling and robust predictive control based on RBF-ARX model , 2007, Eng. Appl. Artif. Intell..

[21]  Jean-Marc Vesin,et al.  An amplitude-dependent autoregressive model based on a radial basis functions expansion , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[23]  Christian W. Dawson,et al.  A review of genetic algorithms applied to training radial basis function networks , 2004, Neural Computing & Applications.

[24]  De-Shuang Huang,et al.  A Hybrid Forward Algorithm for RBF Neural Network Construction , 2006, IEEE Transactions on Neural Networks.

[25]  Zhaoyun Shi,et al.  Nonlinear time series modelling with the radial basis function-based state-dependent autoregressive model , 1999, Int. J. Syst. Sci..

[26]  Louis Wehenkel,et al.  A hybrid optimization technique coupling an evolutionary and a local search algorithm , 2008 .

[27]  Kazushi Nakano,et al.  RBF-ARX model based nonlinear system modeling and predictive control with application to a NOx decomposition process , 2004 .

[28]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .