Biosensors based on one-dimensional nanostructures

Over the past decade, one-dimensional nanostructures (1D-NS) have been studied for the detection of biological molecules. These nanometre-scale materials, with diameters comparable to the size of individual biomolecules, offer the advantage of high sensitivity. In this feature article we discuss different techniques of biosensing using 1D-NS, namely electrical, electrochemical, optical, and mechanical methods, with a focus on the advancement of these techniques. Advantages and disadvantages of various synthesis and functionalization methods of 1D-NS, as well as biosensor device fabrication procedures are discussed. The main focus of this review is to demonstrate the progress of protein and DNA sensors based on 1D-NS over the past decade, and in addition we present an outlook for the future of this technology.

[1]  Amin Salehi-Khojin,et al.  On the sensing mechanism in carbon nanotube chemiresistors. , 2011, ACS nano.

[2]  Anne Imberty,et al.  Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. , 2011, Nano letters.

[3]  K. Balasubramanian,et al.  Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: a review. , 2010, Biosensors & bioelectronics.

[4]  Di Li,et al.  A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. , 2010, Nanoscale.

[5]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[6]  Jeffrey H. Chuang,et al.  A molecular-imprint nanosensor for ultrasensitive detection of proteins. , 2010, Nature nanotechnology.

[7]  Liangbing Hu,et al.  Carbon nanotube thin films: fabrication, properties, and applications. , 2010, Chemical reviews.

[8]  Jia Zhang,et al.  Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors , 2010, Sensors.

[9]  Zhijuan Zhang,et al.  A novel biosensor based on gold nanoparticles modified silicon nanowire arrays , 2010 .

[10]  Sang Yup Lee,et al.  Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. , 2010, Nano letters.

[11]  H. Craighead,et al.  DNA manipulation, sorting, and mapping in nanofluidic systems. , 2010, Chemical Society reviews.

[12]  M. Strano,et al.  A luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP. , 2010, Angewandte Chemie.

[13]  M. Strano,et al.  Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence. , 2010, Small.

[14]  Chad A. Mirkin,et al.  Drivers of biodiagnostic development , 2009, Nature.

[15]  Chongwu Zhou,et al.  Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. , 2009, Nano letters.

[16]  Douglas R. Kauffman,et al.  Electrocatalytic activity of nitrogen-doped carbon nanotube cups. , 2009, Journal of the American Chemical Society.

[17]  Stephen C Jacobson,et al.  Nanofluidics in lab-on-a-chip devices. , 2009, Analytical chemistry.

[18]  Mark E. Thompson,et al.  Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. , 2009, ACS nano.

[19]  Nicola Marzari,et al.  Sensing mechanisms for carbon nanotube based NH3 gas detection. , 2009, Nano letters.

[20]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[21]  Michael S Strano,et al.  Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. , 2009, Nature nanotechnology.

[22]  Phaedon Avouris,et al.  Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. , 2008, ACS nano.

[23]  Michael S Strano,et al.  Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. , 2008, Nano letters.

[24]  Zhuang Liu,et al.  Protein microarrays with carbon nanotubes as multicolor Raman labels , 2008, Nature Biotechnology.

[25]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[26]  J. Rogers,et al.  Electrical Detection of Femtomolar DNA via Gold‐Nanoparticle Enhancement in Carbon‐Nanotube‐Network Field‐Effect Transistors , 2008 .

[27]  Ronghua Yang,et al.  Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. , 2008, Journal of the American Chemical Society.

[28]  Michael S Strano,et al.  Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. , 2008, Nano letters.

[29]  James Hone,et al.  Conductivity of a single DNA duplex bridging a carbon nanotube gap. , 2008, Nature nanotechnology.

[30]  Kui‐Qing Peng,et al.  A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay , 2008 .

[31]  Cees Dekker,et al.  Charge noise in liquid-gated single-wall carbon nanotube transistors. , 2008, Nano letters.

[32]  C. Keating,et al.  Metallic barcodes for multiplexed bioassays. , 2007, Nanomedicine.

[33]  Minghui Yang,et al.  Enzyme-functionalized gold nanowires for the fabrication of biosensors. , 2007, Bioelectrochemistry.

[34]  Shekhar Bhansali,et al.  Electrochemical biosensor for targeted detection in blood using aligned Au nanowires , 2007 .

[35]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[36]  Chan Woo Park,et al.  Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors , 2007 .

[37]  D. Zane,et al.  Feasibility of enzyme biosensors based on gold nanowires , 2007 .

[38]  T. Zhukov,et al.  Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica nanowires , 2007 .

[39]  Prakrit V. Jena,et al.  Divalent ion and thermally induced DNA conformational polymorphism on single-walled carbon nanotubes , 2007 .

[40]  Raymond Tsui,et al.  Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. , 2007, The Analyst.

[41]  Shekhar Bhansali,et al.  Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. , 2007, Biosensors & bioelectronics.

[42]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[43]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[44]  Minghui Yang,et al.  Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. , 2007, Biosensors & bioelectronics.

[45]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[46]  M. Strano,et al.  Reversible control of carbon nanotube aggregation for a glucose affinity sensor. , 2006, Angewandte Chemie.

[47]  John A. Rogers,et al.  Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors , 2006 .

[48]  Gengfeng Zheng,et al.  Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species , 2006, Nature Protocols.

[49]  Joseph D. Gong,et al.  Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. , 2006, Journal of the American Chemical Society.

[50]  J. F. Stoddart,et al.  Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. , 2006, Nano letters.

[51]  William L. Hughes,et al.  Nanowire as pico-gram balance at workplace atmosphere , 2006 .

[52]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[53]  C. Li,et al.  Differentiation of oxidized low density lipoproteins by nanosensors , 2006 .

[54]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[55]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[56]  Michael S Strano,et al.  Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. , 2006, Nano letters.

[57]  Michael S. Strano,et al.  Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes , 2006, Science.

[58]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Thomas E. Eurell,et al.  Single‐Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long‐Term Labels and Optical Sensors , 2005 .

[60]  M. Pumera,et al.  New materials for electrochemical sensing VI: Carbon nanotubes , 2005 .

[61]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[62]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[63]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[64]  Donald J. Sirbuly,et al.  Optical routing and sensing with nanowire assemblies , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Shana O Kelley,et al.  Amplified electrocatalysis at DNA-modified nanowires. , 2005, Nano letters.

[66]  James F Rusling,et al.  Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels. , 2005, Molecular bioSystems.

[67]  Chao Li,et al.  Complementary response of In2O3 nanowires and carbon nanotubes to low-density lipoprotein chemical gating , 2005 .

[68]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[70]  M. Strano,et al.  Near-infrared optical sensors based on single-walled carbon nanotubes , 2004, Nature materials.

[71]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[72]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Itamar Willner,et al.  Long-range electrical contacting of redox enzymes by SWCNT connectors. , 2004, Angewandte Chemie.

[74]  Z. Gu,et al.  Direct Synthesis of High Purity Single-Walled Carbon Nanotube Fibers by Arc Discharge , 2004 .

[75]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[76]  M. Konagai,et al.  Hot filament enhanced CVD synthesis of carbon nanotubes by using a carbon filament , 2004 .

[77]  Joseph Wang,et al.  Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. , 2004, Journal of the American Chemical Society.

[78]  L. Dai,et al.  Aligned carbon nanotube-DNA electrochemical sensors. , 2004, Chemical communications.

[79]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[80]  G. Duesberg,et al.  Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 °C and a Simple Growth Model , 2004 .

[81]  G. Grüner,et al.  Charge Transfer from Adsorbed Proteins , 2004 .

[82]  G. Grüner,et al.  Charge transfer from ammonia physisorbed on nanotubes. , 2003, Physical review letters.

[83]  Alexander Star,et al.  Interaction of Aromatic Compounds with Carbon Nanotubes: Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response , 2003 .

[84]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[85]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[86]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[87]  T. Thundat,et al.  Discerning Biomolecular Interactions Using Kelvin Probe Technology , 2003 .

[88]  Dusan Losic,et al.  Protein electrochemistry using aligned carbon nanotube arrays. , 2003, Journal of the American Chemical Society.

[89]  Hongwei Zhu,et al.  Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique , 2003 .

[90]  Joseph Wang,et al.  Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. , 2003, The Analyst.

[91]  Carter Kittrell,et al.  Reversible, Band-Gap-Selective Protonation of Single-Walled Carbon Nanotubes in Solution , 2003 .

[92]  M. Meyyappan,et al.  Carbon Nanotube Sensors for Gas and Organic Vapor Detection , 2003 .

[93]  T. Someya,et al.  Alcohol Vapor Sensors Based on Single-Walled Carbon Nanotube Field Effect Transistors , 2003 .

[94]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[95]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[96]  James F. Rusling,et al.  Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes , 2003 .

[97]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[98]  G. Grüner,et al.  Influence of Mobile Ions on Nanotube Based FET Devices , 2003 .

[99]  Eric S. Snow,et al.  Random networks of carbon nanotubes as an electronic material , 2003 .

[100]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[101]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[102]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[103]  Jose Maria Kenny,et al.  Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films , 2003 .

[104]  S. Nock,et al.  Recent developments in protein microarray technology. , 2003, Angewandte Chemie.

[105]  Qiang Zhao,et al.  Electrochemical sensors based on carbon nanotubes , 2002 .

[106]  Chun‐Sing Lee,et al.  Ultrafine and uniform silicon nanowires grown with zeolites , 2002 .

[107]  Ray H. Baughman,et al.  Direct electron transfer of glucose oxidase on carbon nanotubes , 2002 .

[108]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[109]  Vijay K. Varadan,et al.  Large-scale synthesis of multi-walled carbon nanotubes by microwave CVD , 2002 .

[110]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[111]  H. Lang,et al.  Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[112]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002, cond-mat/0206392.

[113]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[114]  Peter C. Eklund,et al.  Large-Scale Production of Single-Walled Carbon Nanotubes Using Ultrafast Pulses from a Free Electron Laser , 2002 .

[115]  Richard Martel,et al.  Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes , 2002 .

[116]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[117]  P. Eklund,et al.  CVD Synthesis of Single Wall Carbon Nanotubes under ``soft" Conditions , 2002 .

[118]  Jae Hee Song,et al.  Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. , 2002, Chemistry.

[119]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[120]  Jing Zhu,et al.  A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture , 2001 .

[121]  R. G. Freeman,et al.  Submicrometer metallic barcodes. , 2001, Science.

[122]  S. Noor Mohammad,et al.  Growth of GaN nanowires by direct reaction of Ga with NH3 , 2001 .

[123]  Y. W. Wang,et al.  Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3 , 2001 .

[124]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[125]  Elizabeth C. Dickey,et al.  Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method , 2001 .

[126]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[127]  Shui-Tong Lee,et al.  Synthesis and microstructure of gallium phosphide nanowires , 2001 .

[128]  Pavel Nikolaev,et al.  Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process , 2001 .

[129]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[130]  Shui-Tong Lee,et al.  Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation , 2001 .

[131]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[132]  P. Nikolaev,et al.  Production and measurements of individual single-wall nanotubes and small ropes of carbon , 2001 .

[133]  Shui-Tong Lee,et al.  Temperature Dependence of Si Nanowire Morphology , 2001 .

[134]  K. H. Chen,et al.  Catalytic growth and characterization of gallium nitride nanowires. , 2001, Journal of the American Chemical Society.

[135]  Shui-Tong Lee,et al.  Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires , 2000 .

[136]  Charles M. Lieber,et al.  Diameter-Selective Synthesis of Semiconductor Nanowires , 2000 .

[137]  G. Park,et al.  Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature , 2000 .

[138]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[139]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[140]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[141]  Philip G. Collins,et al.  1/f noise in carbon nanotubes , 2000 .

[142]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[143]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[144]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[145]  Shui-Tong Lee,et al.  One-dimensional growth mechanism of crystalline silicon nanowires , 1999 .

[146]  Shui-Tong Lee,et al.  SiO2-enhanced synthesis of Si nanowires by laser ablation , 1998 .

[147]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[148]  W. Qian,et al.  Nanoscale silicon wires synthesized using simple physical evaporation , 1998 .

[149]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[150]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[151]  Richard J. Coles,et al.  Protein electrochemistry at carbon nanotube electrodes , 1997 .

[152]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[153]  L. Qin CVD synthesis of carbon nanotubes , 1997 .

[154]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[155]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[156]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[157]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[158]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[159]  Iijima,et al.  Growth model for carbon nanotubes. , 1992, Physical review letters.

[160]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[161]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[162]  Kalai Mathee,et al.  Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. , 2008, Nano letters.

[163]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[164]  Joseph R. Stetter,et al.  Sensing with Nafion Coated Carbon Nanotube Field-Effect Transistors , 2004 .

[165]  Juan Jiang,et al.  Nano-biosensor development for bacterial detection during human kidney infection: Use of glycoconjugate-specific antibody-bound gold NanoWire arrays (GNWA) , 2004, Glycoconjugate Journal.

[166]  Joong-Kee Lee,et al.  Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD , 2003 .

[167]  M. V. Antisari,et al.  Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments , 2003 .

[168]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[169]  M. Khakani,et al.  Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd:YAG laser vaporization method , 2002 .

[170]  Johannes D. Seelig,et al.  Label-free protein assay based on a nanomechanical cantilever array , 2002 .