Implementation of Arithmetic Functions on a Simple and Universal Molecular Beacon Platform

Diverse advanced logic circuits are fabricated to implement arithmetic functions based on a simple and single molecular beacon platform, including half adder, half subtractor, full adder, full subtractor, and a digital comparator. Dual fluorescence outputs are generated in parallel and a constant threshold value is set to build all the logic circuits. The developed enzyme‐free DNA system provides a novel prototype for the design of high‐level molecular logic circuits on a biomolecular platform.

[1]  Joakim Andréasson,et al.  All-photonic molecular half-adder. , 2006, Journal of the American Chemical Society.

[2]  D. Stefanovic,et al.  Exercises in Molecular Computing , 2014, Accounts of chemical research.

[3]  Chunhai Fan,et al.  Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. , 2012, Angewandte Chemie.

[4]  Chun-Yu Hsu,et al.  Molecular beacon-based half-adder and half-subtractor. , 2012, Chemical communications.

[5]  A. Credi Molecules that make decisions. , 2007, Angewandte Chemie.

[6]  Sanjay Tyagi,et al.  Molecular Beacons: Probes that Fluoresce upon Hybridization , 1996, Nature Biotechnology.

[7]  Markus Wieland,et al.  Programmable single-cell mammalian biocomputers , 2012, Nature.

[8]  K. Szaciłowski Digital information processing in molecular systems. , 2008, Chemical reviews.

[9]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[10]  A. Prasanna de Silva,et al.  Molecular Logic-based Computation , 2012 .

[11]  Clifford R. Johnson,et al.  Solution of a 20-Variable 3-SAT Problem on a DNA Computer , 2002, Science.

[12]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[13]  Ryan J. White,et al.  DNA biomolecular-electronic encoder and decoder devices constructed by multiplex biosensors , 2012 .

[14]  He Tian,et al.  Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge: multifunctional molecular logic gates on unimolecular platform , 2012 .

[15]  E. Wang,et al.  Implementation of half adder and half subtractor with a simple and universal DNA-based platform , 2013 .

[16]  Françoise Remacle,et al.  All Optical Full Adder Based on Intramolecular Electronic Energy Transfer in the Rhodamine-Azulene Bichromophoric System , 2008 .

[17]  R. Levine,et al.  Molecule-based photonically switched half and full adder. , 2006, The journal of physical chemistry. A.

[18]  Vânia F. Pais,et al.  Information processing with molecules--Quo vadis? , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.

[20]  Yu Liu,et al.  A multifunctional arithmetical processor model integrated inside a single molecule. , 2006, The journal of physical chemistry. B.

[21]  A. Prasanna de Silva,et al.  Molecular computing: A layer of logic , 2008, Nature.

[22]  Nicolas H Voelcker,et al.  Sequence-addressable DNA logic. , 2008, Small.

[23]  Evgeny Katz,et al.  Biomolecular information processing : from logic systems to smart sensors and actuators , 2012 .

[24]  Vladimir Privman,et al.  Enzyme-based logic systems for information processing. , 2009, Chemical Society reviews.

[25]  Cheulhee Jung,et al.  Simple and universal platform for logic gate operations based on molecular beacon probes. , 2012, Small.

[26]  Joakim Andréasson,et al.  Molecular all-photonic encoder-decoder. , 2008, Journal of the American Chemical Society.

[27]  Ehud Shapiro,et al.  Biotechnology: logic goes in vitro. , 2007, Nature nanotechnology.

[28]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[29]  Dik-Lung Ma,et al.  Simple DNA-based logic gates responding to biomolecules and metal ions , 2013 .

[30]  Wei Hong,et al.  A resettable and reprogrammable DNA-based security system to identify multiple users with hierarchy. , 2014, ACS nano.

[31]  I. Willner,et al.  Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. , 2006, Angewandte Chemie.

[32]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[33]  He Tian,et al.  Data processing on a unimolecular platform. , 2010, Angewandte Chemie.

[34]  Yaakov Benenson,et al.  Biocomputers: from test tubes to live cells. , 2009, Molecular bioSystems.

[35]  A. Shanzer,et al.  A molecular full-adder and full-subtractor, an additional step toward a moleculator. , 2006, Journal of the American Chemical Society.

[36]  Dmitry M. Kolpashchikov,et al.  Binary probes for nucleic acid analysis. , 2010, Chemical reviews.

[37]  Qin-Hua Song,et al.  Resettable Multiple-Mode Molecular Arithmetic Systems Based on Spectral Properties of 2-Quinolin-2-ylmethylene-malonic Acids , 2011 .

[38]  E. Wang,et al.  G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. , 2011, Biomaterials.

[39]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[40]  Z. Ezziane DNA computing: applications and challenges , 2006 .

[41]  David Margulies,et al.  Fluorescein as a model molecular calculator with reset capability , 2005, Nature materials.

[42]  Raphael D. Levine,et al.  A full-adder based on reconfigurable DNA-hairpin inputs and DNAzyme computing modules , 2014 .

[43]  Evgeny Katz,et al.  Molecular and supramolecular information processing : from molecular switches to logic systems , 2012 .

[44]  Robert Carlson,et al.  The changing economics of DNA synthesis , 2009, Nature Biotechnology.

[45]  J. Andréasson,et al.  All-Photonic Multifunctional Molecular Logic Device , 2011, Journal of the American Chemical Society.

[46]  J. Andréasson,et al.  Data and signal processing using photochromic molecules. , 2012, Chemical communications.

[47]  Darko Stefanovic,et al.  Chemistry at a Higher Level of Abstraction , 2011 .

[48]  Uwe Pischel,et al.  Advanced molecular logic with memory function. , 2010, Angewandte Chemie.

[49]  Uwe Pischel,et al.  Smart molecules at work--mimicking advanced logic operations. , 2010, Chemical Society reviews.

[50]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[51]  Lihua Lu,et al.  Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe , 2014 .

[52]  Jean-Louis Mergny,et al.  Combination of i-motif and G-quadruplex structures within the same strand: formation and application. , 2013, Angewandte Chemie.

[53]  P. Gregory,et al.  February , 1890, The Hospital.

[54]  Yi Xiao,et al.  In vitro selection of structure-switching, self-reporting aptamers , 2010, Proceedings of the National Academy of Sciences.

[55]  Darko Stefanovic,et al.  Deoxyribozyme-based three-input logic gates and construction of a molecular full adder. , 2006, Biochemistry.

[56]  Philip Ball,et al.  Chemistry meets computing , 2000, Nature.

[57]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[58]  Cheulhee Jung,et al.  "Illusionary" polymerase activity triggered by metal ions: use for molecular logic-gate operations. , 2010, Angewandte Chemie.

[59]  David R Walt,et al.  Intelligent medical diagnostics via molecular logic. , 2009, Journal of the American Chemical Society.

[60]  R. Misra,et al.  Biomaterials , 2008 .

[61]  Y. Benenson Biomolecular computing systems: principles, progress and potential , 2012, Nature Reviews Genetics.

[62]  Uwe Pischel,et al.  Chemical approaches to molecular logic elements for addition and subtraction. , 2007, Angewandte Chemie.

[63]  D. Stefanovic,et al.  Deoxyribozyme-based half-adder. , 2003, Journal of the American Chemical Society.

[64]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .