Total-dose radiation hardness assurance

Total-dose radiation hardness assurance is reviewed for MOS and bipolar devices and integrated circuits (ICs), with an emphasis on issues addressed by recent revisions to military and commercial standard test methods. Hardness assurance typically depends upon sample tests of a subgroup of devices or circuits to determine whether the full group meets its performance and functionality requirements to a desired confidence level. The dose rates of many standard test methods match neither the very high dose rates of some military environments nor the very low dose rates of most space environments. So, one must ensure that hardness assurance test plans address device response in the radiation environment of interest. An increasing emphasis has been placed over the last few decades on standardized test procedures to qualify devices for use in the natural space radiation environment. Challenging issues for defining test methods for space environments are nMOS transistor threshold-voltage rebound and enhanced low-dose-rate sensitivity for linear bipolar devices and ICs. Effects of preirradiation elevated temperature stress on MOS radiation response are also a significant concern. Trends are identified for future radiation hardness tests on advanced microelectronics technologies.

[1]  T. Oldham,et al.  Radiation-Induced Interface Traps , 2000 .

[2]  A. Holmes-Siedle Predicting end-of-life performance of microelectronics in space , 1994 .

[3]  Allan H. Johnston,et al.  Hardness Assurance Techniques for New Generation COTS Devices , 1996 .

[4]  O. Flament,et al.  Effects of isochronal annealing and irradiation temperature on radiation-induced trapped charge , 1998 .

[5]  P. S. Winokur,et al.  Predicting CMOS Inverter Response in Nuclear and Space Environments , 1983, IEEE Transactions on Nuclear Science.

[6]  H. E. Boesch,et al.  Post-Irradiation Effects in Field-Oxide Isolation Structures , 1987, IEEE Transactions on Nuclear Science.

[7]  Marty R. Shaneyfelt,et al.  Use of COTS microelectronics in radiation environments , 1999 .

[8]  peixiong zhao,et al.  Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates , 1994 .

[9]  A. H. Johnston,et al.  Emerging radiation hardness assurance (RHA) issues: a NASA approach for space flight programs , 1998 .

[10]  A. J. Carlan,et al.  Radiation Hardness Assurance for Electronic Parts: Accomplishments and Plans , 1985, IEEE Transactions on Nuclear Science.

[11]  V. A. J. van Lint,et al.  Radiation effects before 1960 , 1994 .

[12]  Daniel M. Fleetwood,et al.  Qualifying commercial ICs for space total-dose environments , 1992 .

[13]  L. Palkuti,et al.  X-Ray Wafer Probe for Total Dose Testing , 1982, IEEE Transactions on Nuclear Science.

[14]  C. Dozier,et al.  The Use of Low Energy X-Rays for Device Testing - A Comparison with Co-60 Radiation , 1983, IEEE Transactions on Nuclear Science.

[15]  R. L. Pease,et al.  Hardness-assurance and testing issues for bipolar/BiCMOS devices , 1993 .

[16]  R. L. Pease,et al.  Hardness assurance testing of bipolar junction transistors at elevated irradiation temperatures , 1997 .

[17]  R. L. Pease,et al.  Impact of aging on radiation hardness[CMOS SRAMs] , 1997 .

[18]  R. V. Jones,et al.  Temperature effects on the radiation response of MOS devices , 1988 .

[19]  Arthur Namenson,et al.  A Logical Methodology for Determining Electrical End Points for Multi-Lot and Multi-Parameter Data , 1987, IEEE Transactions on Nuclear Science.

[20]  B. D. Shafer,et al.  Room Temperature Annealing of Ionizatton-Induced Damage in CMOS Circuits , 1973 .

[21]  D. B. Brown,et al.  Low dose rate effects on linear bipolar IC's: Experiments on the time dependence , 1997 .

[22]  A. A. Abou-Auf Gate-level modeling of leakage current failure induced by total dose for the generation of worst-case test vectors , 1996 .

[23]  J. L. Titus,et al.  Enhanced low dose rate sensitivity (ELDRS) in a voltage comparator which only utilizes complementary vertical NPN and PNP transistors , 1999 .

[24]  J. McGarrity Considerations for Hardening MOS Devices and Circuits for Low Radiation Doses , 1980, IEEE Transactions on Nuclear Science.

[25]  R. L. Pease,et al.  An improved standard total dose test for CMOS space electronics , 1989 .

[26]  J. F. Conley,et al.  The radiation response of the high dielectric-constant hafnium oxide/silicon system , 2002 .

[27]  R. Pease,et al.  Dependence of total dose response of bipolar linear microcircuits on applied dose rate , 1994 .

[28]  Ronald D. Schrimpf,et al.  Dose‐rate effects on radiation‐induced bipolar junction transistor gain degradation , 1994 .

[29]  Marty R. Shaneyfelt,et al.  Hardness variability in commercial technologies , 1994 .

[30]  Daniel M. Fleetwood,et al.  Using laboratory X-ray and cobalt-60 irradiations to predict CMOS device response in strategic and space environments , 1988 .

[31]  R. L. Pease,et al.  Mechanisms for total dose sensitivity to preirradiation thermal stress in bipolar linear microcircuits , 1997 .

[32]  peixiong zhao,et al.  Dose and dose-rate effects on NPN bipolar junction transistors irradiated at high temperature , 2002 .

[33]  C. Dozier,et al.  Effect of Photon Energy on the Response of MOS Devices , 1981, IEEE Transactions on Nuclear Science.

[34]  Daniel M. Fleetwood,et al.  Effects of reliability screens on MOS charge trapping , 1995 .

[35]  Daniel M. Fleetwood,et al.  Effects of irradiation temperature on MOS radiation response , 1997 .

[36]  T. R. Oldham,et al.  Comparison of 60Co Response and 10 KeV X-Ray Response in MOS Capacitors , 1983, IEEE Transactions on Nuclear Science.

[37]  A. V. Sogoyan,et al.  The effect of emitter junction bias on the low dose-rate radiation response of bipolar devices , 1997 .

[38]  P. S. Winokur,et al.  Post irradiation effects (PIE) in integrated circuits (CMOS) , 1991 .

[39]  Dennis B. Brown,et al.  The Phenomenon of Electron Rollout for Energy Deposition and Defect Generation in Irradiated MOS Devices , 1986, IEEE Transactions on Nuclear Science.

[40]  G. L. Hash,et al.  Thermal-stress effects and enhanced low dose rate sensitivity in linear bipolar ICs , 2000 .

[41]  Daniel M. Fleetwood,et al.  Impact of Aging on Radiation Hardness , 1997 .

[42]  Ronald D. Schrimpf,et al.  Experimental validation of an accelerated method of oxide-trap-level characterization for predicting long term thermal effects in metal oxide semiconductor devices , 1997 .

[43]  Daniel M. Fleetwood,et al.  Hardness assurance for low-dose space applications (MOS devices) , 1991 .

[44]  D. Fleetwood,et al.  1/f noise and radiation effects in MOS devices , 1994 .

[45]  P. S. Winokur,et al.  An Evaluation of Low-Energy X-Ray and Cobalt-60 Irradiations of MOS Transistors , 1987, IEEE Transactions on Nuclear Science.

[46]  J. R. Schwank,et al.  Using a 10-keV X-Ray Source for Hardness Assurance , 1986, IEEE Transactions on Nuclear Science.

[47]  K. Aubuchon,et al.  Radiation Hardening of P-MOS Devices by Optimization of the Thermal Si02 Gate Insulator , 1971 .

[48]  Kenneth F. Galloway,et al.  Prediction of low dose-rate effects in power metal oxide semiconductor field effect transistors based on isochronal annealing measurements , 1997 .

[49]  D. B. Brown,et al.  Photon Energy Dependence of Radiation Effects in MOS Structures , 1980, IEEE Transactions on Nuclear Science.

[50]  J. R. Brews,et al.  The determination of Si-SiO/sub 2/ interface trap density in irradiated four-terminal VDMOSFETs using charge pumping , 1996 .

[51]  Daniel M. Fleetwood,et al.  Strategies for lot acceptance testing using CMOS transistors and ICs , 1989 .

[53]  H. A. Eisen,et al.  A methodology for the identification of worst-case test vectors for logical faults induced in CMOS circuits by total dose , 1994 .

[54]  J. P. David,et al.  An attempt to define conservative conditions for total dose evaluation of bipolar ICs , 1997 .

[55]  R. L. Pease,et al.  A proposed hardness assurance test methodology for bipolar linear circuits and devices in a space ionizing radiation environment , 1997 .

[56]  peixiong zhao,et al.  Radiation effects at low electric fields in thermal, SIMOX, and bipolar-base oxides , 1996 .

[57]  John H. Scofield,et al.  Physical basis for nondestructive tests of MOS radiation hardness , 1991 .

[58]  D. B. Brown,et al.  Defect Production in SiO2 by X-Ray and Co-60 Radiations , 1985, IEEE Transactions on Nuclear Science.

[59]  R. N. Hamm,et al.  Dose Calculations for Si-SiO2Si Layered Structures Irradiated by X Rays and 60Co Gamma Rays , 1986, IEEE Transactions on Nuclear Science.

[60]  Ronald D. Schrimpf,et al.  Saturation of the dose-rate response of bipolar transistors below 10 rad(SiO/sub 2/)/s: implications for hardness assurance , 1994 .

[61]  Ronald D. Schrimpf,et al.  Total-dose radiation response of hafnium-silicate capacitors , 2002 .

[62]  B. L. Gregory Process Controls for Radiation-Hardened Aluminum Gate Bulk Silicon CMOS , 1975, IEEE Transactions on Nuclear Science.

[63]  Radiation Testing of the CMOS 8085 Microprocessor Family , 1983, IEEE Transactions on Nuclear Science.

[64]  Dennis B. Brown,et al.  Study of low-dose-rate radiation effects on commercial linear bipolar ICs , 1998 .

[65]  R. L. Pease,et al.  Hardness-assurance issues for lateral PNP bipolar junction transistors , 1995 .

[66]  Daniel M. Fleetwood,et al.  Charge separation in bipolar transistors , 1993 .

[67]  peixiong zhao,et al.  Physically based comparison of hot-carrier-induced and ionizing-radiation-induced degradation in BJTs , 1995 .

[68]  W. Price The Simulation of Space Radiation Damage to Spacecraft Systems , 1965 .

[69]  James M. Puhl,et al.  ACCELERATED TESTS FOR SIMULATING LOW DOSE RATE GAIN DEGRADATION OF LATERAL AND SUBSTRATE PNP BIPOLAR JUNCTION TRANSISTORS , 1996 .

[70]  Kenneth F. Galloway,et al.  Space charge limited degradation of bipolar oxides at low electric fields , 1998 .

[71]  N. S. Saks,et al.  Generation of Interface States by Ionizing Radiation at 80K Measured by Charge Pumping and Subthreshold Slope Techniques , 1987, IEEE Transactions on Nuclear Science.

[72]  H. E. Boesch,et al.  Hole Removal in Thin-Gate MOSFETs by Tunneling , 1985, IEEE Transactions on Nuclear Science.

[73]  B. L. Gregory,et al.  Process Optimization of Radiation-Hardened CMOS Integrated Circuits , 1975, IEEE Transactions on Nuclear Science.

[74]  R. A. Kushner,et al.  Total dose radiation hardness of MOS devices in hermetic ceramic packages , 1988 .

[75]  Paul J. McWhorter,et al.  Modeling the anneal of radiation-induced trapped holes in a varying thermal environment , 1990 .

[76]  E. W. Enlow,et al.  Response of advanced bipolar processes to ionizing radiation , 1991 .

[77]  Daniel M. Fleetwood,et al.  Wafer-level radiation testing for hardness assurance , 1991 .

[78]  R. L. Pease,et al.  Moderated degradation enhancement of lateral pnp transistors due to measurement bias , 1998 .

[79]  R. Pease Total-dose issues for microelectronics in space systems , 1996 .

[80]  R. Ecoffet,et al.  Evaluation of accelerated total dose testing of linear bipolar circuits , 2000 .

[81]  E. E. Conrad Radiation effects research in the 60's , 1994 .

[82]  P. Garnier,et al.  Total dose failures in advanced electronics from single ions , 1993 .

[83]  P. S. Winokur,et al.  Total-Dose Radiation and Annealing Studies: Implications for Hardness Assurance Testing , 1986, IEEE Transactions on Nuclear Science.

[84]  A.H. Johnston,et al.  An updated data compendium of enhanced low dose rate sensitive (ELDRS) bipolar linear circuits , 2001, 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588).

[85]  Allan H. Johnston,et al.  Enhanced damage in linear bipolar integrated circuits at low dose rate , 1995 .

[86]  Daniel M. Fleetwood,et al.  Charge yield for cobalt-60 and 10-keV X-ray irradiations of MOS devices , 1991 .

[87]  R. L. Pease,et al.  Plastic packaging and burn-in effects on ionizing dose response in CMOS microcircuits , 1995 .

[88]  R. L. Pease,et al.  Enhanced low dose rate sensitivity (ELDRS) of linear circuits in a space environment , 1999 .

[89]  O. Flament,et al.  Considerations on isochronal anneal technique: From measurement to physics , 1999 .

[90]  P. S. Winokur,et al.  Accounting for Dose-Enhancement Effects with CMOS Transistors , 1985, IEEE Transactions on Nuclear Science.

[91]  H. Barnaby,et al.  Radiation-induced gain degradation in lateral PNP BJTs with lightly and heavily doped emitters , 1997 .

[92]  Daniel M. Fleetwood A first-principles approach to total-dose hardness assurance , 1995 .

[93]  Arthur R. Hart,et al.  Hardness Assurance Considerations for Long-Term Ionizing Radiation Effects on Bipolar Structures , 1978, IEEE Transactions on Nuclear Science.

[94]  Allan H. Johnston,et al.  Super Recovery of Total Dose Damage in MOS Devices , 1984, IEEE Transactions on Nuclear Science.

[95]  Ronald D. Schrimpf,et al.  Physical model for enhanced interface-trap formation at low dose rates , 2002 .

[96]  Charles E. Barnes,et al.  Accounting for time-dependent effects on CMOS total-dose response in space environments , 1994 .

[97]  R. L. Pease,et al.  Enhanced low-dose-rate sensitivity of a low-dropout voltage regulator , 1998 .

[98]  Vitaly Danchenko,et al.  Characteristics of thermal annealing of radiation damage in MOSFET's. , 1968 .

[99]  A. I. Namenson Lot uniformity and small sample sizes in hardness assurance , 1988 .

[100]  Marty R. Shaneyfelt,et al.  Challenges in hardening technologies using shallow-trench isolation , 1998 .

[101]  R. L. Pease,et al.  Evaluation of proposed hardness assurance method for bipolar linear circuits with enhanced low dose rate sensitivity (ELDRS) , 1998 .

[102]  A. A. Abou-Auf,et al.  Worst-case test vectors for functional failure induced by total dose in CMOS microcircuits with transmission gates , 1997 .

[103]  Daniel M. Fleetwood,et al.  Total-dose hardness assurance issues for SOI MOSFETs , 1988 .

[104]  Ronald L. Pease,et al.  Hardness assurance for space system microelectronics , 1994 .

[105]  Daniel M. Fleetwood,et al.  Effects of burn-in on radiation hardness , 1994 .

[106]  Jeffrey L. Titus,et al.  Wafer Mapping of Total Dose Failure Thresholds in a Bipolar Recessed Field Oxide Technology , 1987, IEEE Transactions on Nuclear Science.

[107]  Ronald D. Schrimpf,et al.  Aging and baking effects on the radiation hardness of MOS capacitors , 2001 .

[108]  Daniel M. Fleetwood,et al.  Hydrogen-related reliability issues for advanced microelectronics , 2002, Microelectron. Reliab..

[109]  Allan H. Johnston,et al.  Total dose effects in conventional bipolar transistors and linear integrated circuits , 1994 .

[110]  R. L. Pease,et al.  Comparison of ionizing-radiation-induced gain degradation in lateral, substrate, and vertical PNP BJTs , 1995 .

[111]  J. R. Srour Radiation effects R&D in the 1970s: a retrospective view , 1994 .

[113]  R. L. Pease,et al.  Trends in the total-dose response of modern bipolar transistors , 1992 .

[114]  A. I. Namenson,et al.  A practical system hardness assurance program (space systems) , 1993 .

[115]  J. S. Browning,et al.  Hardness Assurance Based on System Reliability Models , 1987, IEEE Transactions on Nuclear Science.

[117]  Limitations in the Use of Linear System Theory for the Prediction of Hardened-MOS Device Response in Space Satellite Environments , 1982, IEEE Transactions on Nuclear Science.

[118]  R. L. Pease,et al.  Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar linear ICs , 2002 .

[119]  A. I. Namenson Statistical Analysis of Step Stress Measurements in Hardness Assurance , 1984, IEEE Transactions on Nuclear Science.

[120]  R. L. Pease,et al.  Modeling ionizing radiation induced gain degradation of the lateral PNP bipolar junction transistor , 1996 .

[121]  Itsu Arimura,et al.  Estimating Electronic Parameter End Points for Devices Which Suffer Abrupt Functional Failure during Radiation Testing , 1985, IEEE Transactions on Nuclear Science.

[122]  Daniel M. Fleetwood,et al.  Implementing QML for radiation hardness assurance , 1990 .

[123]  Daniel M. Fleetwood,et al.  Comparison of enhanced device response and predicted X-ray dose enhancement effects on MOS oxides , 1988 .

[124]  Allan H. Johnston,et al.  Enhanced damage in bipolar devices at low dose rates: effects at very low dose rates , 1996 .

[125]  H. E. Boesch,et al.  The Relationship between 60Co and 10-keV X-Ray Damage in MOS Devices , 1986, IEEE Transactions on Nuclear Science.

[126]  R. L. Pease,et al.  Origins of total-dose response variability in linear bipolar microcircuits , 2000 .

[127]  D. Fleetwood,et al.  Correlation between preirradiation 1/f noise and postirradiation oxide-trapped charge in MOS transistors , 1989 .

[128]  A. I. Namenson Hardness Assurance and Overtesting , 1982, IEEE Transactions on Nuclear Science.

[129]  P. S. Winokur,et al.  Physical Mechanisms Contributing to Device "Rebound" , 1984, IEEE Transactions on Nuclear Science.

[130]  A. I. Namenson,et al.  One hundred percent abrupt failure between two radiation levels in step-stress testing of electronic parts , 1993 .

[131]  J. L. Azarewicz,et al.  Radiation testing of semiconductor devices for space electronics , 1988, Proc. IEEE.