Supports of invariant measures for piecewise deterministic Markov processes

For a class of piecewise deterministic Markov processes, the supports of the invariant measures are characterized. This is based on the analysis of controllability properties of an associated deterministic control system. Its invariant control sets determine the supports.

[1]  Mark H. Davis Markov Models and Optimization , 1995 .

[2]  Wolfgang Kliemann,et al.  Qualitative Theory of Stochastic Systems , 1983 .

[3]  Wolfgang Kliemann,et al.  The dynamics of control , 2000 .

[4]  J. Aubin Set-valued analysis , 1990 .

[5]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[6]  Fritz Colonius,et al.  Near Invariance for Markov Diffusion Systems , 2008, SIAM J. Appl. Dyn. Syst..

[7]  Wolfgang Kliemann,et al.  On unique ergodicity for degenerate diffusions , 1987 .

[8]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[9]  Tobias Hurth,et al.  Invariant densities for dynamical systems with random switching , 2012, 1203.5744.

[10]  Martin Rasmussen,et al.  Topological bifurcations of minimal invariant sets for set-valued dynamical systems , 2011, 1105.5018.

[11]  W. Kliemann Recurrence and invariant measures for degenerate diffusions , 1987 .

[12]  M. Benaim,et al.  Qualitative properties of certain piecewise deterministic Markov processes , 2012, 1204.4143.

[13]  Claude Lobry,et al.  Lotka–Volterra with randomly fluctuating environments or “how switching between beneficial environments can make survival harder” , 2014, 1412.1107.

[14]  Christoph Kawan,et al.  Invariance Entropy for Deterministic Control Systems , 2013 .

[15]  Wolfgang Kliemann,et al.  Near invariance and local transience for random diffeomorphisms , 2010 .

[16]  Negash G. Medhin,et al.  Nonlinear Optimal Control Theory , 2012 .