Antichains and duality pairs in the digraph-poset
暂无分享,去创建一个
Lajos Soukup | A. Rényi | A. Rényi | P. Erdős | L. Soukup | Péter L. Erdős
[1] A. Leaf. GRAPH THEORY AND PROBABILITY , 1957 .
[2] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[3] Jaroslav Nesetril,et al. Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) , 2000, J. Comb. Theory, Ser. B.
[4] Péter L. Erdös,et al. How To Split Antichains In Infinite Posets* , 2007, Comb..
[5] Jaroslav Nesetril,et al. On sparse graphs with given colorings and homomorphisms , 2004, J. Comb. Theory, Ser. B.
[6] Vojtech Rödl,et al. Chromatically optimal rigid graphs , 1989, J. Comb. Theory B.
[7] A. Pultr,et al. Combinatorial, algebraic, and topological representations of groups, semigroups, and categories , 1980 .
[8] Rudolf Ahlswede,et al. A splitting property of maximal antichains , 1995, Comb..
[9] Claude Tardif,et al. Generalised Dualities and Finite Maximal Antichains , 2006, WG.
[10] Jaroslav Nesetril,et al. On maximal finite antichains in the homomorphism order of directed graphs , 2003, Discuss. Math. Graph Theory.
[11] Jaroslav Nesetril,et al. On Finite Maximal Antichains in the Homomorphism Order , 2007, Electron. Notes Discret. Math..
[12] Jaroslav Nesetril,et al. Universal partial order represented by means of oriented trees and other simple graphs , 2005, Eur. J. Comb..
[13] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[14] Dwight Duffus,et al. Antichains in the homomorphism order of graphs , 2007 .
[15] Xuding Zhu,et al. Duality and Polynomial Testing of Tree Homomorphisms , 1996 .
[16] Jaroslav Nesetril,et al. On classes of relations and graphs determined by subobjects and factorobjects , 1978, Discret. Math..
[17] Jaroslav Nesetril,et al. Generalised dualities and maximal finite antichains in the homomorphism order of relational structures , 2008, Eur. J. Comb..