Integration of Hydrogeophysical Datasets for Improved Water Resource Management in Irrigated Systems

ii Acknowledgements iv Table of Figures vii Table of Tables ix List of Abbreviations x Chapter 1: Foreword 1 Chapter 2: Integration of Hydrogeophysical Datasets for Improved Water Resource Management in Irrigated Systems 3 2.

[1]  K. Watkins Human Development Report 2006 - Beyond Scarcity: Power, Poverty and the Global Water Crisis , 2006 .

[2]  William Lane Austin,et al.  The Census of Agriculture , 1930 .

[3]  R. G. Evans,et al.  Precision Center Pivot Irrigation for Efficient Use of Water and Nitrogen , 2015 .

[4]  David Molden,et al.  Water responses to urbanization , 2007, Paddy and Water Environment.

[5]  W. J. Shuttleworth,et al.  COSMOS: the COsmic-ray Soil Moisture Observing System , 2012 .

[6]  Andreas G. Lazari,et al.  Soil electrical conductivity as a function of soil water content and implications for soil mapping , 2006, Precision Agriculture.

[7]  Karl Schneider,et al.  Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions , 2009 .

[8]  Kenneth A. Sudduth,et al.  Validating a Digital Soil Map with Corn Yield Data for Precision Agriculture Decision Support , 2016 .

[9]  Carolyn Hedley,et al.  The role of precision agriculture for improved nutrient management on farms. , 2015, Journal of the science of food and agriculture.

[10]  J. Seibert,et al.  On the calculation of the topographic wetness index: evaluation of different methods based on field observations , 2005 .

[11]  Paul D. Ayers,et al.  High-resolution prediction of soil available water content within the crop root zone , 2015 .

[12]  L. Pan,et al.  Analysis of soil water availability by integrating spatial and temporal sensor-based data , 2013, Precision Agriculture.

[13]  Richard E. Plant,et al.  Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content , 2011, Precision Agriculture.

[14]  Uwe Schindler,et al.  The evaporation method: Extending the measurement range of soil hydraulic properties using the air-entry pressure of the ceramic cup , 2010 .

[15]  H. Hendricks Franssen,et al.  Accuracy of the cosmic‐ray soil water content probe in humid forest ecosystems: The worst case scenario , 2013 .

[16]  T. Ferré,et al.  Field Validation of a Cosmic‐Ray Neutron Sensor Using a Distributed Sensor Network , 2012 .

[17]  Auro C. Almeida,et al.  Field testing of the universal calibration function for determination of soil moisture with cosmic‐ray neutrons , 2014 .

[18]  R. Reedy,et al.  Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley , 2012, Proceedings of the National Academy of Sciences.

[19]  Paul,et al.  Advanced Irrigation Engineering: Precision and Precise , 2012 .

[20]  J. Wallace,et al.  Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia , 2014 .

[21]  A. Peters,et al.  Author ' s personal copy Simplified evaporation method for determining soil hydraulic properties , 2008 .

[22]  E. Njoku,et al.  Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis Document (ATBD) , 2012 .

[23]  C. D. Thatte,et al.  Irrigation and drainage. Main contributors to global food production , 2005 .

[24]  Timothy R. Green,et al.  Effect of Soil Water on Apparent Soil Electrical Conductivity and Texture Relationships in a Dryland Field , 2006 .

[25]  Mariette Vreugdenhil,et al.  Using Cosmic-Ray Neutron Probes to Monitor Landscape Scale Soil Water Content in Mixed Land Use Agricultural Systems , 2016 .

[26]  David A. Robinson,et al.  Coupling vegetation organization patterns to soil resource heterogeneity in a central Kenyan dryland using geophysical imagery , 2011 .

[27]  Heinz Sourell,et al.  Feasibility study of monitoring the total available water content using non‐invasive electromagnetic induction‐based and electrode‐based soil electrical conductivity measurements , 2007 .

[28]  Jeffrey D. Niemann,et al.  Analysis and estimation of soil moisture at the catchment scale using EOFs , 2007 .

[29]  Ian J. Yule,et al.  Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling , 2013 .

[30]  Luca Brocca,et al.  Combined analysis of soil moisture measurements from roving and fixed cosmic ray neutron probes for multiscale real‐time monitoring , 2015 .

[31]  Andrew S. Jones,et al.  A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data , 2015 .

[32]  J. Niemann,et al.  Evaluation of sampling techniques to characterize topographically-dependent variability for soil moisture downscaling , 2014 .

[33]  Paul D. Ayers,et al.  Perspectives on delineating management zones for variable rate irrigation , 2015, Comput. Electron. Agric..

[34]  M. Zreda,et al.  Footprint characteristics revised for field‐scale soil moisture monitoring with cosmic‐ray neutrons , 2015, 1602.04469.

[35]  Steven R. Raine,et al.  Development and simulation of sensor-based irrigation control strategies for cotton using the VARIwise simulation framework , 2014 .

[36]  Susan S. Hubbard,et al.  The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales , 2015, Water resources research.