Constraints on Solar System early evolution by MicrOmega analysis of Ryugu carbonates

[1]  A. Davis,et al.  Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites , 2022, Science.

[2]  C. Pilorget,et al.  Calibration and performances of the MicrOmega instrument for the characterization of asteroid Ryugu returned samples. , 2022, The Review of scientific instruments.

[3]  C. Pilorget,et al.  Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu , 2021, Nature Astronomy.

[4]  C. Pilorget,et al.  First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope , 2021, Nature Astronomy.

[5]  C. Pilorget,et al.  Spectrally blue hydrated parent body of asteroid (162173) Ryugu , 2021, Nature Communications.

[6]  G. Swayze,et al.  Spectral Properties of Anhydrous Carbonates and Nitrates , 2021, Earth and Space Science.

[7]  F. Scholten,et al.  Spectrophotometric Analysis of the Ryugu Rock Seen by MASCOT: Searching for a Carbonaceous Chondrite Analog , 2020, 2011.13810.

[8]  W. Bottke,et al.  Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu , 2020, Nature Communications.

[9]  Hirotaka Sawada,et al.  Boulder size and shape distributions on asteroid Ryugu , 2019, Icarus.

[10]  A. Bischoff,et al.  Modal abundances of coarse-grained (>5 μm) components within CI-chondrites and their individual clasts – Mixing of various lithologies on the CI parent body(ies) , 2019 .

[11]  P. Hoppe,et al.  Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites , 2019, Nature Astronomy.

[12]  D. DellaGiustina,et al.  Expected spectral characteristics of (101955) Bennu and (162173) Ryugu, targets of the OSIRIS-REx and Hayabusa2 missions , 2018, Icarus.

[13]  C. Pilorget,et al.  The MicrOmega Investigation Onboard ExoMars , 2017 .

[14]  V. Heber,et al.  Matrix effects on the relative sensitivity factors for manganese and chromium during ion microprobe analysis of carbonate: Implications for early Solar System chronology , 2017 .

[15]  T. Hiroi,et al.  The NASA Reflectance Experiment Laboratory (RELAB) Facility: Past, Present, and Future , 2016 .

[16]  Martin R. Lee,et al.  Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration , 2014 .

[17]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[18]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[19]  R. Bowden,et al.  Carbonate abundances and isotopic compositions in chondrites , 2013 .

[20]  Simone De LEUW,et al.  Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites , 2010 .

[21]  A. Bischoff,et al.  Early aqueous activity on primitive meteorite parent bodies , 1996, Nature.

[22]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[23]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[24]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[25]  J. Kerridge,et al.  Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.

[26]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[27]  H. Yabuta,et al.  SMALL RYUGU FRAGMENTS ANALYZED BY IR MICRO-SPECTROSCOPY AND TOMOGRAPHY: A DESCRIPTION OF THE 3D HETEROGENEITY AT THE MICROMETRIC SCALE , 2022 .

[28]  C. Pilorget,et al.  MORPHOLOGICAL CLASSIFICATION OF RYUGU RETURNED SAMPLES BASED ON CURATION INITIAL DESCRIPTION , 2022 .

[29]  H. Yabuta,et al.  VISIBLE AND IR HYPERSPECTRAL IMAGING OF RYUGU SAMPLES COMPARED TO METEO- RITES AND TO REMOTE SENSING OF BENNU AND OTHER PRIMITIVE ASTEROIDS , 2022 .

[30]  H. Yurimoto CHEMICAL AND ISOTOPIC CHARACTERIZATION OF ASTEROID RYUGU , 2022 .

[31]  J. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .