Statistics of real-world hyperspectral images

Hyperspectral images provide higher spectral resolution than typical RGB images by including per-pixel irradiance measurements in a number of narrow bands of wavelength in the visible spectrum. The additional spectral resolution may be useful for many visual tasks, including segmentation, recognition, and relighting. Vision systems that seek to capture and exploit hyperspectral data should benefit from statistical models of natural hyperspectral images, but at present, relatively little is known about their structure. Using a new collection of fifty hyperspectral images of indoor and outdoor scenes, we derive an optimized “spatio-spectral basis” for representing hyperspectral image patches, and explore statistical models for the coefficients in this basis.

[1]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[2]  Gunther Heidemann,et al.  The principal components of natural images revisited , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  T. W. Lee,et al.  Chromatic structure of natural scenes. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Lise L. Randeberg,et al.  Hyperspectral imaging of bruised skin , 2006, SPIE BiOS.

[5]  Steven D. Hordley,et al.  A multi-spectral image database and its application to image rendering across illumination , 2004, Third International Conference on Image and Graphics (ICIG'04).

[6]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[7]  Terrence J. Sejnowski,et al.  The Spectral Independent Components of Natural Scenes , 2000, Biologically Motivated Computer Vision.

[8]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Richard G. Baraniuk,et al.  Multiscale image segmentation using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[10]  Kinjiro Amano,et al.  Information limits on neural identification of colored surfaces in natural scenes , 2004, Visual Neuroscience.

[11]  D. Tolhurst,et al.  Spatiochromatic Properties of Natural Images and Human Vision , 2002, Current Biology.

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[14]  Shree K. Nayar,et al.  Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum , 2010, IEEE Transactions on Image Processing.

[15]  D. Elder,et al.  Differentiation of normal skin and melanoma using high resolution hyperspectral imaging , 2006, Cancer biology & therapy.

[16]  William T. Freeman,et al.  What makes a good model of natural images? , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  R.W. Schafer,et al.  Demosaicking: color filter array interpolation , 2005, IEEE Signal Processing Magazine.

[18]  Shree K. Nayar,et al.  Multispectral Imaging Using Multiplexed Illumination , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[19]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[20]  Eero P. Simoncelli,et al.  Image Denoising using Gaussian Scale Mixtures in the Wavelet Domain , 2002 .

[21]  Stephen Lin,et al.  A Prism-Mask System for Multispectral Video Acquisition. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[22]  Thomas W. Parks,et al.  Adaptive homogeneity-directed demosaicing algorithm , 2005, IEEE Transactions on Image Processing.

[23]  Jian-Feng Cai,et al.  Blind motion deblurring from a single image using sparse approximation , 2009, CVPR.

[24]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[25]  S. Ustin,et al.  Mapping nonnative plants using hyperspectral imagery , 2003 .

[26]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  S. Silvestri,et al.  Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing , 2006 .

[28]  Brian A. Wandell,et al.  Spatio-spectral reconstruction of the multispectral datacube using sparse recovery , 2008, 2008 15th IEEE International Conference on Image Processing.

[29]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[30]  Brian A. Wandell,et al.  Dictionaries for sparse representation and recovery of reflectances , 2009, Electronic Imaging.

[31]  Guillermo Sapiro,et al.  Discriminative sparse representations in hyperspectral imagery , 2010, 2010 IEEE International Conference on Image Processing.

[32]  Costas Balas,et al.  Hyperspectral image acquisition and analysis of skin , 2003, SPIE BiOS.

[33]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Keigo Hirakawa,et al.  Color constancy beyond bags of pixels , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Béla Ágai,et al.  CONDENSED 1,3,5-TRIAZEPINES - V THE SYNTHESIS OF PYRAZOLO [1,5-a] [1,3,5]-BENZOTRIAZEPINES , 1983 .

[36]  J. Parkkinen,et al.  Characteristic spectra of Munsell colors , 1989 .

[37]  R. K. Rowe,et al.  Multispectral fingerprint biometrics , 2005, Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop.

[38]  B A Wandell,et al.  Linear models of surface and illuminant spectra. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[39]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[40]  Joost van de Weijer,et al.  Color constancy based on the Grey-edge hypothesis , 2005, IEEE International Conference on Image Processing 2005.

[41]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[42]  Harel Z. Shouval,et al.  Principal Components of Natural Images: An Analytical Solution , 1993 .

[43]  M. Borengasser,et al.  Hyperspectral Remote Sensing: Principles and Applications , 2007 .