Microbial diversity of soda lakes

Abstract Soda lakes are highly alkaline extreme environments that form in closed drainage basins exposed to high evaporation rates. Because of the scarcity of Mg2+ and Ca2+ in the water chemistry, the lakes become enriched in CO32− and Cl−, with pHs in the range 8 to >12. Although there is a clear difference in prokaryotic communities between the hypersaline lakes where NaCl concentrations are >15% w/v and more dilute waters, i.e., NaCl concentrations about 5% w/v, photosynthetic primary production appears to be the basis of all nutrient recycling. In both the aerobic and anaerobic microbial communities the major trophic groups responsible for cycling of carbon and sulfur have in general been identified. Systematic studies have shown that the microbes are alkaliphilic and many represent separate lineages within accepted taxa, while others show no strong relationship to known prokaryotes. Although alkaliphiles are widespread it seems probable that these organisms, especially those unique to the hypersaline lakes, evolved separately within an alkaline environment. Although present-day soda lakes are geologically quite recent, they have probably existed since archaean times, permitting the evolution of independent communities of alkaliphiles since an early period in the Earth's history.

[1]  B. Jones,et al.  Alkaliphiles: Ecology, diversity and applications , 1990 .

[2]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[3]  H. Eugster,et al.  Hydrochemistry of the Lake Magadi basin, Kenya , 1977 .

[4]  F. Rainey,et al.  Natroniella acetigena gen. nov. sp. nov., an Extremely Haloalkaliphilic, Homoacetic Bacterium: A New Member of Haloanaerobiales , 1996, Current Microbiology.

[5]  C R Woese,et al.  The phylogeny of purple bacteria: the alpha subdivision. , 1984, Systematic and applied microbiology.

[6]  A. D. Imms Scientific results of the Cambridge Expedition to the East African Lakes, 1930‐1.–10. On some Aquatic Coleopterous Larvae. , 1933 .

[7]  B. Jones,et al.  Alkaliphiles: Diversity and Identification , 1994 .

[8]  F. Rainey,et al.  Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus , 1994 .

[9]  F. Priest,et al.  Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species , 1995 .

[10]  J. Wiegel,et al.  Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. , 1993 .

[11]  W. P. Karpeta Bedded cherts in the Rietgat Formation, Hartbeesfontein, South Africa; a late Archaean to early Proterozoic magadiitic alkaline playa lake deposit? , 1989 .

[12]  John M. Melack,et al.  Photosynthetic rates of phytoplankton in East African alkaline, saline lakes1 , 1974 .

[13]  D. Boone,et al.  Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer , 1990 .

[14]  P. Schumann,et al.  Bogoriella caseilytica gen. nov., sp. nov., a new alkaliphilic actinomycete from a soda lake in Africa. , 1997, International journal of systematic bacteriology.

[15]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[16]  Johannes F. Imhoff,et al.  The Wadi Natrun: Chemical composition and microbial mass developments in alkaline brines of Eutrophic Desert Lakes , 1979 .

[17]  P. Jenkin,et al.  XV.—Reports on the Percy Sladen Expedition to some Rift Valley Lakes in Kenya in 1929.—VII. Summary of the Ecological Results, with Special Reference to the alkaline Lakes , 1936 .

[18]  M. Kalyuzhnaya,et al.  Isolation and Characterization of Halotolerant Alkaliphilic Methanotrophic Bacteria from Tuva Soda Lakes , 1997, Current Microbiology.

[19]  F. Rainey,et al.  Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the Continental Soda Lakes in Central Asia and the East African Rift. , 1996, International journal of systematic bacteriology.

[20]  H. W. Parker Scientific results of the Cambridge Expedition to the East African Lakes , 1932 .

[21]  J. Wiegel,et al.  Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. , 1994, International journal of systematic bacteriology.

[22]  M. Dyall-Smith,et al.  Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomo , 1997, International journal of systematic bacteriology.

[23]  S. Kempe,et al.  Calcium carbonate supersaturation and the formation of in situ calcified stromatolites , 1990 .

[24]  A. Lysenko,et al.  Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinaeae isolated from lake Magadi , 1997 .

[25]  J. Casanova East African Rift stromatolites , 1986, Geological Society, London, Special Publications.

[26]  William D. Grant,et al.  Phylogenetic diversity of soda lake alkaliphiles , 1996 .

[27]  F. Rainey,et al.  Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. , 1997, International journal of systematic bacteriology.

[28]  Stephan Kempe,et al.  An early soda ocean , 1985 .

[29]  Larry L. Barton,et al.  Sulfate-Reducing Bacteria , 1995, Biotechnology Handbooks.

[30]  G. Gould,et al.  Microbial growth and survival in extremes of environment , 1980 .

[31]  U. Hammer,et al.  Saline lake ecosystems of the world , 1986 .

[32]  M. Russell The generation at hot springs of sedimentary ore deposits, microbialites and life , 1996 .

[33]  Wanjiru E. Mwatha Microbial ecology of Kenyan soda lakes , 1991 .

[34]  A. Reimer,et al.  Largest known microbialites discovered in Lake Van, Turkey , 1991, Nature.

[35]  Y Van de Peer,et al.  The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA. , 1996, Journal of molecular evolution.

[36]  J. Schopf Major events in the history of life , 1992 .

[37]  R. B. Wood,et al.  The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes , 1973 .

[38]  Dumont,et al.  Saline Lakes , 1990, Developments in Hydrobiology.

[39]  Brian J. Tindall,et al.  Sulfophobococcus zilligii gen. nov., spec. nov. a Novel Hyperthermophilic Archaeum Isolated from Hot Alkaline Springs of Iceland , 1997 .

[40]  G. Fox,et al.  Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. , 1988, International journal of systematic bacteriology.