LMap: Shape-Preserving Local Mappings for Biomedical Visualization

Visualization of medical organs and biological structures is a challenging task because of their complex geometry and the resultant occlusions. Global spherical and planar mapping techniques simplify the complex geometry and resolve the occlusions to aid in visualization. However, while resolving the occlusions these techniques do not preserve the geometric context, making them less suitable for mission-critical biomedical visualization tasks. In this paper, we present a shape-preserving local mapping technique for resolving occlusions locally while preserving the overall geometric context. More specifically, we present a novel visualization algorithm, LMap, for conformally parameterizing and deforming a selected local region-of-interest (ROI) on an arbitrary surface. The resultant shape-preserving local mappings help to visualize complex surfaces while preserving the overall geometric context. The algorithm is based on the robust and efficient extrinsic Ricci flow technique, and uses the dynamic Ricci flow algorithm to guarantee the existence of a local map for a selected ROI on an arbitrary surface. We show the effectiveness and efficacy of our method in three challenging use cases: (1) multimodal brain visualization, (2) optimal coverage of virtual colonoscopy centerline flythrough, and (3) molecular surface visualization.

[1]  Roman G. Efremov,et al.  PREDDIMER: a web server for prediction of transmembrane helical dimers , 2014, Bioinform..

[2]  Ge Wang,et al.  GI tract unraveling with curved cross sections , 1998, IEEE Transactions on Medical Imaging.

[3]  Arie E. Kaufman,et al.  Corresponding Supine and Prone Colon Visualization Using Eigenfunction Analysis and Fold Modeling , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  Patrice Koehl,et al.  How round is a protein? Exploring protein structures for globularity using conformal mapping , 2014, Front. Mol. Biosci..

[5]  Ron Kikinis,et al.  Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.

[6]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[7]  Feng Qiu,et al.  A Pipeline for Computer Aided Polyp Detection , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Sahand Jamal Rahi,et al.  Mapping Complicated Surfaces onto a Sphere , 2007, Int. J. Comput. Geom. Appl..

[9]  Jerry L. Prince,et al.  A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces , 2008, IEEE Transactions on Medical Imaging.

[10]  Xin Zhao,et al.  Area-Preservation Mapping using Optimal Mass Transport , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[12]  Wei Zeng,et al.  Supine and Prone Colon Registration Using Quasi-Conformal Mapping , 2010, IEEE Transactions on Visualization and Computer Graphics.

[13]  Thomas Ertl,et al.  Molecular Surface Maps , 2017, IEEE Transactions on Visualization and Computer Graphics.

[14]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[15]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[16]  Wei Zeng,et al.  Colon Flattening Using Heat Diffusion Riemannian Metric , 2013, IEEE Transactions on Visualization and Computer Graphics.

[17]  Ron Kikinis,et al.  Conformal Geometry and Brain Flattening , 1999, MICCAI.

[18]  Joseph Marino Context Preserving Maps of Tubular Structures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  Mario Costa Sousa,et al.  Decal-Maps: Real-Time Layering of Decals on Surfaces for Multivariate Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[20]  Keenan Crane,et al.  Spin transformations of discrete surfaces , 2011, ACM Trans. Graph..

[21]  Eduard Gröller,et al.  Virtual Colon Flattening , 2001, VisSym.

[22]  Lok Ming Lui,et al.  FLASH: Fast Landmark Aligned Spherical Harmonic Parameterization for Genus-0 Closed Brain Surfaces , 2015, SIAM J. Imaging Sci..

[23]  Eduard Gröller,et al.  Nonlinear virtual colon unfolding , 2001, Proceedings Visualization, 2001. VIS '01..

[24]  Kenneth Stephenson,et al.  Cortical cartography using the discrete conformal approach of circle packings , 2004, NeuroImage.

[25]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[26]  Sarah F. Frisken Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998, MICCAI.

[27]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.

[28]  Xiang Li,et al.  An Improved Electronic Colon Cleansing Method for Detection of Colonic Polyps by Virtual Colonoscopy , 2006, IEEE Transactions on Biomedical Engineering.

[29]  D S Paik,et al.  Visualization modes for CT colonography using cylindrical and planar map projections. , 2000, Journal of computer assisted tomography.

[30]  Georgia Tsiliki,et al.  Structuprint: a scalable and extensible tool for two-dimensional representation of protein surfaces , 2016, BMC Structural Biology.

[31]  Wei Zeng,et al.  Spherical Parameterization Balancing Angle and Area Distortions , 2017, IEEE Transactions on Visualization and Computer Graphics.

[32]  David A. Rottenberg,et al.  Quantitative evaluation of three cortical surface flattening methods , 2005, NeuroImage.

[33]  Arie E. Kaufman,et al.  Multimodal brain visualization , 2016, SPIE Medical Imaging.

[34]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[35]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.