Numerical simulation of a guitar

The purpose of this study is to present a time-domain numerical modeling of the guitar. The model involves the transverse displacement of the string excited by a force pulse, the flexural motion of the soundboard and the sound radiation in the air. We use a specific spectral method for solving the Kirchhoff-Love's dynamic plate model for orthotropic material, a fictitious domain method for solving the fluid-structure interaction and a conservative scheme for the time discretization. One of the originality of the proposed scheme is a stable coupling method between a continuous time resolution and a discrete one.

[1]  Grégoire Derveaux,et al.  Modélisation numérique de la guitare acoustique , 2002 .

[2]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[3]  A. Dasgupta,et al.  Vibrations of Plates , 2007 .

[4]  Peter Monk,et al.  A mixed finite element method for the biharmonic equation , 1987 .

[5]  Philippe Destuynder,et al.  Mathematical Analysis of Thin Plate Models , 1996 .

[6]  Pascal Frey,et al.  MEDIT : An interactive Mesh visualization Software , 2001 .

[7]  Antoine Chaigne,et al.  Time-domain simulation of a guitar: model and method. , 2003, The Journal of the Acoustical Society of America.

[8]  Shanhong Ji,et al.  Finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[9]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[10]  Michel Fortin,et al.  Numerical approximation of Mindlin-Reissner plates , 1986 .

[11]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[12]  Elejabarrieta,et al.  Evolution of the vibrational behavior of a guitar soundboard along successive construction phases by means of the modal analysis technique , 2000, The Journal of the Acoustical Society of America.

[13]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[14]  Patrick Joly,et al.  Fictitious Domain Method for Unsteady Problems , 1997 .

[15]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[16]  Patrick Joly,et al.  An efficient numerical method for the resolution of the Kirchhoff‐Love dynamic plate equation , 2005 .

[17]  F. Collino Conditions absorbantes d'ordre eleve pour des modeles de propagation d'onde dans des domaines rectangulaires , 1992 .

[18]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[19]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[20]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[21]  A new finite element scheme for bending plates , 1988 .

[22]  G. P. Astrakhantsev Method of fictitious domains for a second-order elliptic equation with natural boundary conditions , 1978 .

[23]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[24]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[25]  P. G. Ciarlet,et al.  Theory of plates , 1997 .

[26]  Peter R. Turner,et al.  Topics in Numerical Analysis , 1982 .

[27]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[28]  Patrick Joly,et al.  Domaines fictifs, éléments finis H(div) et condition de Neumann: le problème de la condition inf-sup , 1999 .

[29]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[30]  Klaus-Jürgen Bathe,et al.  On finite element analysis of fluid flows fully coupled with structural interactions , 1999 .

[31]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  F. Collino,et al.  Fictitious Domain Method for Unsteady Problems: Application to Electromagnetic Scattering , 1996 .

[34]  Antoine Chaigne,et al.  TIME-DOMAIN MODELING AND NUMERICAL SIMULATION OF A KETTLEDRUM , 1999 .

[35]  A. Chaigne,et al.  Time-domain simulation of damped impacted plates. I. Theory and experiments. , 2001, The Journal of the Acoustical Society of America.

[36]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[37]  Patrick Joly,et al.  FICTITIOUS DOMAINS, MIXED FINITE ELEMENTS AND PERFECTLY MATCHED LAYERS FOR 2-D ELASTIC WAVE PROPAGATION , 2001 .

[38]  Nathalie Tordjman,et al.  Éléments finis d'ordre élevé avec condensation de masse pour l'équation des ondes , 1994 .