KINETIC SEMIDISCRETIZATION OF SCALAR CONSERVATION LAWS AND CONVERGENCE BY USING AVERAGING LEMMAS
暂无分享,去创建一个
[1] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[2] B. Perthame,et al. Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .
[3] Y. Brenier. Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .
[4] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[5] S. Mischler,et al. About the splitting algorithm for Boltzmann and B , 1996 .
[6] Y. Brenier,et al. A kinetic formulation for multi-branch entropy solutions of scalar conservation laws , 1998 .
[7] Pierre-Louis Lions,et al. Lp regularity of velocity averages , 1991 .
[8] Yann Brenier,et al. Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .
[9] Y. Giga,et al. A kinetic construction of global solutions of first order quasilinear equations , 1983 .