On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations
暂无分享,去创建一个
Volker John | Julia Novo | J. Novo | V. John
[1] Lutz Tobiska,et al. Numerical Methods for Singularly Perturbed Differential Equations , 1996 .
[2] K. Gustafsson,et al. API stepsize control for the numerical solution of ordinary differential equations , 1988 .
[3] Alice J. Kozakevicius,et al. Adaptive multiresolution WENO schemes for multi-species kinematic flow models , 2007, J. Comput. Phys..
[4] Alvaro L. G. A. Coutinho,et al. Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction–convection–diffusion processes , 2005 .
[5] Robert Bauer,et al. A Hybrid Adaptive ENO Scheme , 1997 .
[6] Alice de Jesus Kozakevicius,et al. ENO adaptive method for solving one-dimensional conservation laws , 2009 .
[7] Dmitri Kuzmin,et al. Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .
[8] K. Sundmacher,et al. Simulations of Population Balance Systems with One Internal Coordinate using Finite Element Methods , 2009 .
[9] David F. Griffiths,et al. Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..
[10] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[11] Chi-Wang Shu,et al. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..
[12] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[13] D. Kuzmin,et al. Algebraic Flux Correction II , 2012 .
[14] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[15] Onur Baysal,et al. Stabilized finite element methods for time dependent convection-diffusion equations , 2012 .
[16] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[17] J. Peraire,et al. Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .
[18] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[19] Volker John,et al. Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..
[20] C.A.J. Fletcher,et al. The group finite element formulation , 1983 .
[21] Volker John,et al. Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .
[22] Rainald Löhner,et al. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..
[23] Stefan Turek,et al. Flux correction tools for finite elements , 2002 .
[24] Dmitri Kuzmin,et al. Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..
[25] Gunar Matthies,et al. MooNMD – a program package based on mapped finite element methods , 2004 .
[26] Erik Burman,et al. Finite element methods with symmetric stabilization for the transient convection―diffusion-reaction equation , 2009 .
[27] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[28] Víctor M. Pérez-García,et al. Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method , 2006, SIAM J. Sci. Comput..
[29] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[30] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[31] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[32] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[33] Volker John,et al. On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .
[34] Volker John,et al. Measurement and simulation of a droplet population in a turbulent flow field , 2012 .
[35] Stefan Turek,et al. Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.
[36] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[37] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[38] Matthias Möller,et al. Adaptive high-resolution finite element schemes , 2008 .