On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations

Finite element and finite difference discretizations for evolutionary convection-diffusion-reaction equations in two and three dimensions are studied which give solutions without or with small under- and overshoots. The studied methods include a linear and a nonlinear FEM-FCT scheme, simple upwinding, an ENO scheme of order 3, and a fifth order WENO scheme. Both finite element methods are combined with the Crank-Nicolson scheme and the finite difference discretizations are coupled with explicit total variation diminishing Runge-Kutta methods. An assessment of the methods with respect to accuracy, size of under- and overshoots, and efficiency is presented, in the situation of a domain which is a tensor product of intervals and of uniform grids in time and space. Some comments to the aspects of adaptivity and more complicated domains are given. The obtained results lead to recommendations concerning the use of the methods.

[1]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[2]  K. Gustafsson,et al.  API stepsize control for the numerical solution of ordinary differential equations , 1988 .

[3]  Alice J. Kozakevicius,et al.  Adaptive multiresolution WENO schemes for multi-species kinematic flow models , 2007, J. Comput. Phys..

[4]  Alvaro L. G. A. Coutinho,et al.  Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction–convection–diffusion processes , 2005 .

[5]  Robert Bauer,et al.  A Hybrid Adaptive ENO Scheme , 1997 .

[6]  Alice de Jesus Kozakevicius,et al.  ENO adaptive method for solving one-dimensional conservation laws , 2009 .

[7]  Dmitri Kuzmin,et al.  Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .

[8]  K. Sundmacher,et al.  Simulations of Population Balance Systems with One Internal Coordinate using Finite Element Methods , 2009 .

[9]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[12]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[13]  D. Kuzmin,et al.  Algebraic Flux Correction II , 2012 .

[14]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[15]  Onur Baysal,et al.  Stabilized finite element methods for time dependent convection-diffusion equations , 2012 .

[16]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[17]  J. Peraire,et al.  Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes equations , 1987 .

[18]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[19]  Volker John,et al.  Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..

[20]  C.A.J. Fletcher,et al.  The group finite element formulation , 1983 .

[21]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[22]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[23]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .

[24]  Dmitri Kuzmin,et al.  Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..

[25]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[26]  Erik Burman,et al.  Finite element methods with symmetric stabilization for the transient convection―diffusion-reaction equation , 2009 .

[27]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[28]  Víctor M. Pérez-García,et al.  Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method , 2006, SIAM J. Sci. Comput..

[29]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[30]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[31]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[32]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[33]  Volker John,et al.  On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .

[34]  Volker John,et al.  Measurement and simulation of a droplet population in a turbulent flow field , 2012 .

[35]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[36]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[37]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[38]  Matthias Möller,et al.  Adaptive high-resolution finite element schemes , 2008 .