Universal simulation of Hamiltonians using a finite set of control operations

Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and present a sufficient condition in terms of group characters. We give examples of such groups in dimension 2 and 3. Furthermore, we show that it is possible to simulate an arbitrary bipartite interaction by a given one using such groups acting locally on the subsystems.

[1]  J. Cirac,et al.  Nonlocal Hamiltonian simulation assisted by local operations and classical communication , 2002 .

[2]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[3]  D. Janzing,et al.  Simulating arbitrary pair-interactions by a given Hamiltonian: graph-theoretical bounds on the time-complexity , 2001, Quantum Inf. Comput..

[4]  M. Nielsen,et al.  Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries , 2001, quant-ph/0106064.

[5]  D. Janzing,et al.  DistinguishingnHamiltonians onCnby a single measurement , 2001, quant-ph/0103021.

[6]  D. Janzing,et al.  Quantum control without access to the controlling interaction , 2001, quant-ph/0103022.

[7]  D. Janzing,et al.  Distinguishing n Hamiltonians on Cn by a single measurement , 2002 .

[8]  J. I. Cirac,et al.  Optimal simulation of nonlocal Hamiltonians using local operations and classical communication , 2001 .

[9]  G. Mahler,et al.  Suppression of arbitrary internal coupling in a quantum register , 2001, quant-ph/0107059.

[10]  D. Leung Simulation and reversal of n -qubit Hamiltonians using Hadamard matrices , 2001, quant-ph/0107041.

[11]  Pawel Wocjan,et al.  Complexity of inverting n-spin interactions: Arrow of time in quantum control , 2001 .

[12]  M. Horodecki,et al.  Dynamics of quantum entanglement , 2000, quant-ph/0008115.

[13]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[14]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[15]  Quantum message authentication codes , 2001 .

[16]  Paolo Zanardi Stabilizing quantum information , 2000 .

[17]  A. Klappenecker,et al.  A Remark on Unitary Error Bases , 2000 .

[18]  Viola,et al.  Theory of quantum error correction for general noise , 1996, Physical review letters.

[19]  E. Knill,et al.  Universal Control of Decoupled Quantum Systems , 1999, Physical Review Letters.

[20]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[21]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[22]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[23]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[24]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[25]  E. Knill Group representations, error bases and quantum codes , 1996, quant-ph/9608049.

[26]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[27]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[28]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[31]  K. Servis Principles of Nuclear Magnetic Resonance in One and Two Dimensions R. R. Ernst, G. Bodenhausen, A. Wokaun. (Eidgenossische Technische Hoschschule, Zurich), Oxford, Clarendon Press, 1987, XXIV + 610 pp. $98.00 , 1988 .

[32]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[33]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[34]  R. Feynman Simulating physics with computers , 1999 .

[35]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[36]  A. Pines,et al.  Violation of the Spin-Temperature Hypothesis , 1970 .