Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .

[3]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[4]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[5]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .

[6]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[7]  Syukuro Manabe,et al.  Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere , 1980 .

[8]  R. Sadourny,et al.  Land surface processes in a simplified general circulation model , 1981 .

[9]  A. Arakawa,et al.  A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations , 1981 .

[10]  Jean-Jacques Morcrette,et al.  Pressure and temperature dependence of the absorption in longwave radiation parameterizations , 1986 .

[11]  Arana,et al.  Progress in Photosynthesis Research , 1987, Springer Netherlands.

[12]  I. E. Woodrow,et al.  A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions , 1987 .

[13]  K. Laval Land Surface Processes , 1988 .

[14]  M. Prather,et al.  Stratospheric ozone. , 1988, Science.

[15]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[16]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[17]  M. Morrissey An Evaluation of Ship Data in the Equatorial Western Pacific , 1990 .

[18]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[19]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[20]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[21]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[22]  A. Perrier,et al.  SECHIBA : a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model , 1993 .

[23]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[24]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[25]  G. Brasseur,et al.  Chemistry of the 1991–1992 stratospheric winter: Three‐dimensional model simulations , 1994 .

[26]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[27]  B. Liebmann,et al.  Description of a complete (interpolated) outgoing longwave radiation dataset , 1996 .

[28]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[29]  Wolfgang Ludwig,et al.  Predicting the oceanic input of organic carbon by continental erosion , 1996 .

[30]  U. Lohmann,et al.  The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models , 1996 .

[31]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[32]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[33]  R. Döscher,et al.  A Method for Improved Representation of Dense Water Spreading over Topography in Geopotential-Coordinate Models , 1997 .

[34]  Jan Polcher,et al.  Modelling root water uptake in a complex land surface scheme coupled to a GCM , 1998 .

[35]  Franck Lefèvre,et al.  The 1997 Arctic Ozone depletion quantified from three‐dimensional model simulations , 1998 .

[36]  M. Schulz,et al.  Role of aerosol size distribution and source location in a three‐dimensional simulation of a Saharan dust episode tested against satellite‐derived optical thickness , 1998 .

[37]  J. Oberhuber,et al.  The variability of the tropical Atlantic , 1998 .

[38]  Gerald L Detter RICH GET RICHER , 1999 .

[39]  F. Lott Alleviation of Stationary Biases in a GCM through a Mountain Drag Parameterization Scheme and a Simple Representation of Mountain Lift Forces , 1999 .

[40]  M. Hulme,et al.  A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974 to 1994 , 1999 .

[41]  Sasha Madronich,et al.  The Role of Solar Radiation in Atmospheric Chemistry , 1999 .

[42]  M. Maqueda,et al.  Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover , 1999 .

[43]  W. Merryfield,et al.  A Global Ocean Model with Double-Diffusive Mixing , 1999 .

[44]  Mark New,et al.  Surface air temperature and its changes over the past 150 years , 1999 .

[45]  John F. B. Mitchell,et al.  Towards the Construction of Climate Change Scenarios , 1999 .

[46]  Frédéric Hourdin,et al.  The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model , 1999 .

[47]  Jean-Philippe Duvel,et al.  A New Approach to Detect and Characterize Intermittent Atmospheric Oscillations: Application to the Intraseasonal Oscillation , 2000 .

[48]  K. Shine Radiative Forcing of Climate Change , 2000 .

[49]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[50]  K. Shine Radiative Forcing of Climate Change , 2000 .

[51]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[52]  Audrey Estublier,et al.  Choice of an advection scheme for biogeochemical models , 2001 .

[53]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[54]  M. Allen,et al.  Constraints on future changes in climate and the hydrologic cycle , 2002, Nature.

[55]  John R. Lanzante,et al.  The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans , 2002 .

[56]  F. Hourdin,et al.  Parameterization of the Dry Convective Boundary Layer Based on a Mass Flux Representation of Thermals , 2002 .

[57]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[58]  L. Axell Wind‐driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea , 2002 .

[59]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[60]  Olivier Boucher,et al.  History of sulfate aerosol radiative forcings , 2002 .

[61]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[62]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .

[63]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[64]  P. de Rosnay,et al.  Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula , 2003 .

[65]  Claus Fröhlich,et al.  Solar radiative output and its variability: evidence and mechanisms , 2004 .

[66]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[67]  A. Hall The role of surface albedo feedback in climate , 2004 .

[68]  A. Blumberg,et al.  Wave Breaking and Ocean Surface Layer Thermal Response , 2004 .

[69]  J. Neelin,et al.  Mechanisms of global warming impacts on regional Tropical precipitation , 2004 .

[70]  Jean-Francois Lamarque,et al.  Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation: INTERACTIVE CHEMISTRY IN LMDZ , 2004 .

[71]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[72]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[73]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[74]  D. Hauglustaine,et al.  Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990–2100 , 2005 .

[75]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[76]  O. Boucher,et al.  Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data , 2005 .

[77]  Gerhard Krinner,et al.  Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model , 2005 .

[78]  J. Dufresne,et al.  Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century , 2005 .

[79]  S. Emori,et al.  Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate , 2005 .

[80]  Greg Kopp,et al.  SORCE Contributions to New Understanding of Global Change and Solar Variability , 2005 .

[81]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[82]  J. Lean,et al.  Modeling the Sun’s Magnetic Field and Irradiance since 1713 , 2005 .

[83]  E. O. Hulburt,et al.  SORCE CONTRIBUTIONS TO NEW UNDERSTANDING OF GLOBAL CHANGE AND SOLAR VARIABILITY , 2005 .

[84]  F. Hourdin,et al.  The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate , 2005 .

[85]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[86]  E. Guilyardi,et al.  The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM , 2006 .

[87]  D. Hauglustaine,et al.  Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry , 2006 .

[88]  P. Woodworth,et al.  Editorial (From the issue entitled "Special Issue in honour and in memory of Christian Le Provost - Modelling, observing, and forecasting sea level, ocean tides and ocean circulation: reviews and recent progress") , 2006 .

[89]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[90]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[91]  P. Jones,et al.  Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 , 2006 .

[92]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[93]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[94]  Frédéric Hourdin,et al.  Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model , 2007 .

[95]  T. Gerkema,et al.  On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing , 2007 .

[96]  H. L. Miller,et al.  Global climate projections , 2007 .

[97]  J. Marotzke,et al.  Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. , 2007, Science.

[98]  Scott C. Doney,et al.  Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon‐cycle Model Intercomparison Project (OCMIP‐2) , 2007 .

[99]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[100]  Fulvio Scarano,et al.  Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows , 2007 .

[101]  Jean-Michel André,et al.  Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model , 2007 .

[102]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[103]  E. Guilyardi,et al.  Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting , 2007 .

[104]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[105]  G. Madec,et al.  Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model , 2007 .

[106]  Christophe Cassou,et al.  Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation , 2008, Nature.

[107]  Impact des aérosols anthropiques sur le climat présent et futur , 2008 .

[108]  F. Hourdin,et al.  A Thermal Plume Model for the Convective Boundary Layer : Representation of Cumulus Clouds , 2008 .

[109]  G. Madec NEMO ocean engine , 2008 .

[110]  H. Burchard,et al.  Comparative quantification of physically and numerically induced mixing in ocean models , 2008 .

[111]  G. Madec,et al.  Geothermal heating, diapycnal mixing and the abyssal circulation , 2008 .

[112]  F. Lott,et al.  The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980–1999 , 2008 .

[113]  M. Webb,et al.  Tropospheric Adjustment Induces a Cloud Component in CO2 Forcing , 2008 .

[114]  G. Ramstein,et al.  Impact of a realistic river routing in coupled ocean–atmosphere simulations of the Last Glacial Maximum climate , 2008 .

[115]  Piers M. Forster,et al.  CO2 forcing induces semi‐direct effects with consequences for climate feedback interpretations , 2008 .

[116]  Jan Polcher,et al.  Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes , 2008 .

[117]  E. Guilyardi,et al.  UNDERSTANDING EL NINO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS : Progress and Challenges , 2008 .

[118]  L. Bopp,et al.  What does temporal variability in aeolian dust deposition contribute to sea‐surface iron and chlorophyll distributions? , 2008 .

[119]  Sandrine Bony,et al.  An Assessment of the Primary Sources of Spread of Global Warming Estimates from Coupled Atmosphere–Ocean Models , 2008 .

[120]  P. Ciais,et al.  Spatiotemporal patterns of terrestrial carbon cycle during the 20th century , 2009 .

[121]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[122]  L. Bopp,et al.  Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification , 2009 .

[123]  F. Hourdin,et al.  Resolved versus parametrized boundary-layer plumes , 2009 .

[124]  P. Levan,et al.  Impact of organized intraseasonal convective perturbations on the tropical circulation , 2009 .

[125]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[126]  J. Neelin,et al.  Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming , 2009 .

[127]  E. Guilyardi,et al.  The role of atmosphere feedbacks during ENSO in the CMIP3 models , 2009 .

[128]  A. Wittenberg Are historical records sufficient to constrain ENSO simulations? , 2009 .

[129]  G. Madec,et al.  How momentum advection schemes influence current-topography interactions at eddy permitting resolution , 2009 .

[130]  Matthieu Lengaigne,et al.  Bio‐physical feedbacks in the Arctic Ocean using an Earth system model , 2009 .

[131]  Ken Takahashi Radiative Constraints on the Hydrological Cycle in an Idealized Radiative–Convective Equilibrium Model , 2009 .

[132]  M. Kageyama,et al.  Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM , 2009 .

[133]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2009 .

[134]  P. Braconnot,et al.  Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP , 2009 .

[135]  A revised estimate of the processes contributing to global warming due to climate‐carbon feedback , 2009 .

[136]  Keith P. Shine,et al.  Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation , 2010 .

[137]  Veronika Eyring,et al.  Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment , 2010 .

[138]  Veronika Eyring,et al.  SPARC Report on the Evaluation of Chemistry-Climate Models , 2010 .

[139]  Veronika Eyring,et al.  Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models , 2010 .

[140]  F. Hourdin,et al.  Resolved Versus Parametrized Boundary-Layer Plumes. Part II: Continuous Formulations of Mixing Rates for Mass-Flux Schemes , 2010 .

[141]  Veronika Eyring,et al.  Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings , 2010 .

[142]  Gregory C. Johnson,et al.  Robust warming of the global upper ocean , 2010, Nature.

[143]  G. Madec,et al.  Tidal mixing in the Indonesian Seas and its effect on the tropical climate system , 2010 .

[144]  Jean-Philippe Lafore,et al.  A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part I: The Models , 2010 .

[145]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[146]  F. Doblas-Reyes,et al.  An Evaluation Metric for Intraseasonal Variability and its Application to CMIP3 Twentieth-Century Simulations , 2010 .

[147]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[148]  Pierre Friedlingstein,et al.  Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution , 2010 .

[149]  Veronika Eyring,et al.  Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios , 2010 .

[150]  J. Marotzke,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[151]  F. Chéruy,et al.  A Density Current Parameterization Coupled with Emanuel’s Convection Scheme. Part II: 1D Simulations , 2010 .

[152]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[153]  G. P. Kyle,et al.  Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways , 2011 .

[154]  F. Jin,et al.  An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models , 2011 .

[155]  Francis Codron,et al.  Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM , 2011 .

[156]  Radiative forcing estimates in coupled climate-chemistry models with emphasis on the role of the temporal variability , 2011 .

[157]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[158]  E. Guilyardi,et al.  The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms , 2011 .

[159]  C. Deser,et al.  Rethinking the Ocean’s Role in the Southern Oscillation , 2011 .

[160]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[161]  P. Terray Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation , 2011 .

[162]  J. Dufresne,et al.  Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment , 2011 .

[163]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[164]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[165]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[166]  F. Lott,et al.  Tropical variability and stratospheric equatorial waves in the IPSLCM5 model , 2012, Climate Dynamics.

[167]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[168]  K. Trenberth,et al.  Tracking Earth’s Energy: From El Niño to Global Warming , 2012, Surveys in Geophysics.

[169]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[170]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[171]  E. Guilyardi,et al.  Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model , 2013, Climate Dynamics.

[172]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[173]  Marie-Alice Foujols,et al.  Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model , 2013, Climate Dynamics.

[174]  F. D'Andrea,et al.  Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales , 2012, Climate Dynamics.

[175]  North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution , 2013, Climate Dynamics.

[176]  E. Guilyardi,et al.  Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model—part I: comparing IPSL_CM5A to IPSL_CM4 , 2013, Climate Dynamics.

[177]  E. Guilyardi,et al.  The Role of Atmosphere Feedbacks during ENSO in the CMIP3 Models. Part III: The Shortwave Flux Feedback , 2012 .

[178]  Jean-Charles Dupont,et al.  Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory , 2013, Climate Dynamics.

[179]  J. Mignot,et al.  A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM , 2013, Climate Dynamics.

[180]  Robert S. Kandel,et al.  Observing and modeling earth's energy flows , 2012 .

[181]  Catherine Rio,et al.  Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds , 2013, Boundary-Layer Meteorology.

[182]  E. Guilyardi,et al.  Initialisation and predictability of the AMOC over the last 50 years in a climate model , 2013, Climate Dynamics.

[183]  Stephen E. Schwartz,et al.  Observing and Modeling Earth’s Energy Flows , 2012, Surveys in Geophysics.

[184]  R. Vautard,et al.  Evaluation of regional climate simulations for air quality modelling purposes , 2013, Climate Dynamics.

[185]  H. Douville,et al.  Towards a better understanding of changes in wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models , 2013, Climate Dynamics.

[186]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[187]  J. Fyfe,et al.  Ocean carbon uptake and storage influenced by wind bias in global climate models , 2012 .

[188]  An event-by-event assessment of tropical intraseasonal perturbations for general circulation models , 2013, Climate Dynamics.

[189]  Radiative forcing estimates of sulfate aerosol in coupled climate-chemistry models with emphasis on the role of the temporal variability , 2012 .

[190]  E. Guilyardi,et al.  Mid-Holocene and last glacial maximum climate simulations with the IPSL model: part II: model-data comparisons , 2013, Climate Dynamics.

[191]  Long-term changes in tropospheric and stratospheric ozone and associated climate impacts in CMIP5 simulations , 2013 .

[192]  F. Lott,et al.  Sudden stratospheric warmings and tropospheric blockings in a multi-century simulation of the IPSL-CM5A coupled climate model , 2013, Climate Dynamics.

[193]  P. J. Young,et al.  Long‐term ozone changes and associated climate impacts in CMIP5 simulations , 2013 .

[194]  N. Swart The Southern Hemisphere Westerlies and the ocean carbon cycle: the influence of climate model wind biases and human induced changes. , 2013 .

[195]  A. Pollard Surface To Air , 2015 .

[196]  V. L. Orkin,et al.  Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 , 2015 .

[197]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .